《第二章整式的乘法教案(共31页).doc》由会员分享,可在线阅读,更多相关《第二章整式的乘法教案(共31页).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二章 整式的乘法2.1.1 同底数幂的乘法 k5F*Fh1wM0111 教学目标:-rAxv ML01知识与技能:理解同底数幂的乘法法则的由来,掌握同底数幂的乘法法则;能熟练地运用同底数幂的乘法法则进行计算。WF;p9o G%J(-h:k02过程与方法:在探究同底数幂的乘法法则的过程中,培养学生观察、概括与抽象的能力。8J jZ1t!D,|-smkj03情感、态度与价值观:进一步了解从特殊到一般与从一般到特殊的重要数学思想,培养学生良好的思维习惯和积极的学习态度。吉林省教育社区K Yz J _:d教学重点、难点:吉林省教育社区3q7a o$x6| ;|重点:掌握同底
2、数幂的乘法法则及其简单应用。YdeYqEO_0难点:理解同底数幂的乘法法则的推导过程。吉林省教育社区L?E*E b+C8Pj教学方法:引导发现法、合作探究法、练习巩固法。教具准备:多媒体课件1Z-GC.l0a7X8VA0教学过程:吉林省教育社区3V3wu;t0%x一、创设情境,引入新课:)Sl4s)A)m1b*y01、出示问题 “2008年,中国奥委会为了把奥运会办成一个环保的奥运会,决定大面积采用太阳能,据统计:一平方千米的土地上,一年内从太阳得到的能量相当于燃烧 千克煤所产生的能量。那么 平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克?vAi4g.B2IA0v A0列式为:10
3、8105吉林省教育社区m3T$_|#9t.UM5t)x那么hK8Rj&F;B.p:L5dV0108105等于多少呢?由此引出新课。通过问题情境创设,激发学生的求知欲望,把注意力集中到如何解决同底数幂的乘法问题上,为探索新知识创造良好的开端。吉林省教育社区JD1H(Qth g吉林省教育社区VD:K5yY8?p-C9eo2、知识回顾:回顾乘方的意义、幂、底数、指数的概念。吉林省教育社区2k&P*Xh9B _0t/v K吉林省教育社区b4?7M9f)wf Jt pY C.;G$Dp吉林省教育社区Q8H9j9z吉林省教育社区c _ 通过知识回顾,让学生把旧知识重新调用出来,为本节课服务。达到激发学生的
4、学习兴趣摆脱掉数学课枯燥乏味的课堂气氛的目的。吉林省教育社区Rn8S5hqw&Y二、合作学习,建立模型.l.V5mm$m01、各学习小组合作探究以下几个问题。吉林省教育社区l sM3QN PHA5254 (底数、指数都是数字的情况)吉林省教育社区,V0G;I#kCEa4a3 (底数改为字母,指数依然是数字的情况)aman(m、n为正整数)= (底数、指数都改为字母的情况)吉林省教育社区Q*E lX H;L n+z8n0引导学生剖析法则 (1)等号左边是什么运算? /f;weM-t(g/V9N0(2)等号两边的底数有什么关系?7G!ah;o-J)lac U G0(3)等号两边的指数有什么关系?
5、(4)运算结果有什么规律?这一:J)c4Tzd0环节主要是通过探索发现新知的过程,培养学生的观察、概括与抽象的能力。吉林省教育社区g KY | Y(w通过学生合作学习,发现了同底数幂的乘法法则。增强学生探索的信心,体验到了成功感觉。吉林省教育社区k Sy;-rFE2、展示合作学习的成果,加深对幂的意义的理解。um7V KZ03、通过小组的合作学习学生按照教师的引导归纳总结出吉林省教育社区/N.k/VU*L9同底数幂的乘法法则:7T!hM JjcOvy0同底数幂相乘,底数不变,指数相加。pru%dl0K TTw0式子表示:aman=am+nkf$O;Y0M0/u-tg&pRc8 nSq0三、应用
6、新知,体验成功吉林省教育社区vZP bJ K;O例1:主要是应用法则的基本例题吉林省教育社区y7qs)Ov+j(1) (2)a a3q!|FzP0i+hE0一定要强调利用同底数幂的乘法法则去完成计算,严格要求不能跳步。紧接着就安排了运用法则的强化练习(通过反复的强化,增强运用法则的熟练程度)?/i j#nN025 22 a7 a3 -b.b4 yn+1 yn-1 (n是大于1的正整数) 强化练习之后安排了“辩一辩”:吉林省教育社区 zWG d7dU(1)c c3= c3 ( ) (2)m + m3 = m4( )(3)x5 x5= x25( )吉林省教育社区FD8tGM (4)a3 +a3=
7、a6 ( )(5)28 23 = 211 ( ) 练一练:结果用幂的形式表示。,ZaWe0oxz0(1)(-2)4*(-2)5= (2)-x5.x5=(3)(a+b)2.(a+b)5 = 吉林省教育社区_G#M,k7Z分析:公式中的底数可以表示哪些数?想一想:结果写成幂的形式。(1) (2) (3)通过问题回解,培养学生解决问题的能力,体会数学知识的实用性。;h3t/oCUg%r0四、归纳小结:今天这堂课学到了什么东西。m En g Tq(K0同底数幂相乘的运算法则,能用式子表示,也能用语言叙述。吉林省教育社区Jp*J+O6wV提升对本节课所学知识的认识,培养学生良好的反思意识。2vB!FsJ
8、0五、拓展延伸:法则的逆用:已知:六、布置 9OOXN#|0R0作业: 教材30页 习题 教学后记:2.1.2幂的乘方与积的乘方(1)教学目标:1、经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。2、了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。教学重点:会进行幂的乘方的运算。教学难点:幂的乘方法则的总结及运用。教学方法:尝试练习法,讨论法,归纳法。教学过程:一、 知识准备1、 复习同底数幂的运算法则及作业讲评2、 计算:(23)2(32)23、 64表示_4_个_6_相乘。(62)4表示_4_个_62_相乘。二、探究新知1、P31做一做(1)计
9、算(a3)4a3 a3 a3 a3 乘方的意义=a3+3+3+3 同底数幂相乘的法则=a34=a12(2)归纳法则(am)n=a mn (m、n为正整数)(3)语言叙述:幂的乘方,底数不变,指数相乘。2、范例分析(P32的例题)例 计算(1)(103)2(2)(x4)3 (3)(a4)3(4)(xm)4 (5) (a4)3a3 (按教材有关内容讲解)三、练习与小结1、完成P32的练习题2、判断题,错误的予以改正。(1)a5+a5=2a10 ( )(2)(s3)3=x6 ( )(3)(3)2(3)4=(3)6=36 ( )(4)x3+y3=(x+y)3 ( ) (5)(mn)34(mn)26=0
10、 ( ) 学生通过练习巩固刚刚学习的新知识。在此基础上加深知识的应用。3、小结:会进行幂的乘方的运算。四、布置作业:P40习题2。1A组3题补充:计算 (1) (2) (3) (mn)35教学后记:2.1.2 幂的乘方与积的乘方(2)教学目的:1、经历探索积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。2、了解积的乘方的运算性质,并能解决一些实际问题。教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。教学方法:探索、猜想、实践法教学过程:一、课前练习:1、计算下列各式:(1) (2) (3)(4)(5)(6)(7) (8) (9)(10) (11
11、)2、下列各式正确的是( )(A) (B) (C)(D)二、探究新知:1、计算下列各题:(1)计算:(2)计算:(3)计算:从上面的计算中,你发现了什么规律?_ 2、猜一猜填空:(1) (2)(3) 你能推出它的结果吗?3、归纳结论: (n为正整数)4、文字叙述:积的乘方等于把各个因式分别乘方,再把所得的幂相乘。5、范例分析(P34的例6和例7)例1、计算:(1)(2)(3)(4)(按教材内容分析后进行讲解,并板书,注意它的符号及分数的乘方的计算问题)例2计算:(1)(按步骤分步进行计算)(2)(补充题)三、练习及小结:1、练习P34的练习题2、课堂小结:本节课学习了积的乘方的性质及应用,要注
12、意它与幂的乘方的区别。四、布置作业P40习题2.14题补充:计算:(1)(2)教学后记:吉林省教育社区0L7GlKj2.1.3 单项式的乘法教学目标1、使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;2、注意培养学生归纳、概括能力,以及运算能力。教学重点:单项式的乘法法则及其应用教学难点:准确、迅速地进行单项式的乘法运算。教学过程一、准备知识1下列单项式各是几次单项式?它们的系数各是什么? 2下列代数式中,哪些是单项式?哪些不是?3利用乘法的交换律、结合律计算:6413254前面学习了哪三种幂的运算性质?内容是什么?(1)aman =am+n (2) (am)n=a mn (
13、m、n为正整数)(3) (n为正整数)二、探究新知1、做一做(P35)怎样计算4x2y与-3xy2z的乘积?解:4x2y(-3xy2z)为什么加乘号?可以省略吗? =4(-3)(x2x)(yy2)z运用了乘法的交换律和结合律=-12x3y3z 运用同底数的幂的乘法法则2、归纳单项式的乘法法则两个或两个以上的单项式相乘,把系数相乘,同底数幂的相加。(对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式)引导学生剖析法则:(1)法则实际分为三点:系数相乘有理数的乘法;相同字母相乘同底数幂的乘法;只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式。(2)不论几个单项
14、式相乘,都可以用这个法则。(3)单项式相乘的结果仍是单项式。3、计算下列单项式乘以单项式(学生计算): 2x2y3xy3=(23)(x2x)(yy3)=6x3y4;4、范例分析例1计算:(1)(-2x3y2)(3x2y); (2)(2a)2(-3a2b) ; (3)(2xn+1y)( 引导学生分析后,按教材内容写出解答)注意:(1)正确使用单项式乘法法则(2)同底数幂相乘注意指数是1的情况(3)单独一个单项式中有的字母照写。例2人造卫星绕地球运行的速度(即第一宇宙速度)是7.9103米/ 秒,求卫星绕地球运行一天所走过的路程(用科学记数法表示)解:根据题意,得:(7.9103)(246060)
15、(7.96624)(1010103)(8647.9)1056825.61056.8256108(米)三、小结与练习1、练习P361至3题2、课堂小结四、布置作业:P40习题2.15题补充题:1、计算:(1)(3x2y)3(-4xy2);(2)(-xy2z3)4(-x2y)3。教学后记:吉林省教育社区LKYz 2.1.4 多项式的乘法(1)教学目标【知识与技能】进一步理解乘法对加法的分配律,会进行单项式与多项式的乘法运算。【过程与方法】通过自主探究、自主发展,明确单项式与多项式相乘,实际上就是掌握乘法对加法的分配律,能熟练的进行单项式与多项式的乘法运算。【情感、态度与价值观】培养学生自主探究、自
16、主理解、自主学习的态度,体会数学的转化思想,发展有条理的思考问题的能力,并感受学习的乐趣。教学重点难点【重点】理解和掌握单项式与多项式的乘法法则。【难点】正确的计算字母系数和确定字母指数。教学过程(一)创设情境 导入新课导语 前面我们学习了单项式与单项式相乘,本节课我们来学习单项式与多项式相乘(板书课题)单项式与多项式相乘。(二)合作交流 解读探究复习回顾(1)乘法分配律。(2)确定符号法则。1.单项式与多项式相乘的法则【动脑筋】怎样计算2x与多项式3的积?说一说利用乘法对加法的分配律怎样计算。由此你得到了什么启示?单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,
17、再把所得的积相加。(也可以说成是:对于单项式与多项式相乘,利用乘法对加法的分配律进行运算)。注意(1)单项式与多项式相乘,其结果是多项式,它的项数与因式中的多项式的项数相同。(2)注意积的符号的确定(两数相乘,同号得正,异号得负),注意正确使用幂的运算法则。(3)含有多重括号时,一般由里向外去括号。(4)对于含有乘方、乘法、加减法的混合运算题目,要注意运算顺序(“先乘方,再乘除,最后才是加减法”)。(5)在运算过程中,若有同类项就要合并同类项,最终结果是不能合并同类项。2.单项式与多项式相乘的应用举例。做一做计算:(1)2x(3);(2)()(-4ab)。【点评】(1)方法熟练后,第一步的“+
18、”号可以省略,(2)计算单项式与单项式相乘时应按法则去做(第一步计算系数;第二步计算相同字母的积)。试一试计算:(-xy)的值,其中x=2,y=-1.【解析】要先化简再求值,而不要直接代入求值。【点评】一个负数或一个分数的乘方一定要添括号;能合并同类项的就要合并同类项。(三)巩固练习课本P96练习1、2.(四)课堂小结单项式乘以多项式的法则:m(a+b+c)=mambmc。(五)作业课本P100习题4.2A组第6、7题。教学后记:2.1.4多项式的乘法(2)教学目标【知识与技能】理解多项式的乘法法则,会进行多项式的乘法运算。【过程与方法】通过自主探究、自主发展,从感性认识上升到理性认识,多项式
19、与多项式相乘,实际上就是两次(或几次)运用乘法对加法的分配律便可得到结果,能熟练的进行多项式与多项式的乘法运算。【情感、态度与价值观】培养学生用几何图形理解代数知识的能力,和复杂问题转化为简单问题的转化思想。 教学重点难点【重点】探索多项式的乘法法则。【难点】探索多项式的乘法法则,注意多项式乘方运算中“漏乘”、“多乘”及符号问题。教学过程(一)创设情境 导入新课导语 有一套一房一厅一厨一卫的居室,其平面图如图所示(单位:m),怎样用代数式表示出它的面积呢? 交流讨论请根据图示,列出代数式与同桌交流,看表达的形式是否相同?若不同,有哪几种形式,它们有什么关系?(二)合作交流 解读探究复习回顾(1
20、)单项式与多项式相乘的法则。1 多项式与多项式相乘(以导语为例探索出多项式与多项式相乘的法则) 方法一:南北总长为(a+b),东西向总长为(mn),所以居室的总面积为:(a+b)(m+n)();方法二:北边两间的面积和为a(m+n)+b(m+n)()方法三:四间房(厅)的总面积为am+an+bm+bn()归纳上述三个代数式都是从不同的角度去描述该居室的总面积,显然,我们有(a+b)(m+n)=a(m+n)+b(m+n)=am+an+bm+bn。感悟一把“m+n”看作一个整体,两次使用乘法分配律,不就得到了多项式乘以多项式的法则了吗?感悟二议一议你能用语言叙述出多项式与多项式相乘的法则吗?多项式
21、与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式每一项,再把所得的积相加。注意(1)多项式与多项式相乘,结果还是多项式;若展开括号不能合并同类项,则项数等于这两个多项式项数的积。(2)运用法则时,不重乘也不漏乘,一定要按顺序乘。(3)法则中的“每一项”都包括这一项前的符号。2. 应用法则举例例1 计算:(2x+y)(3a-b)解:(2x+y)(3a-b) =2x3a+2x(-b)+y3a+y(-b) =6ax-2bx+3ay-by.【点评】熟练之后,解法的第一步可以省略。例2 计算:(1)(2x+y)(x-3y) (2)。【点评】在多项式与多项式相乘的结果中,如果
22、有同类项,应当合并。例3 计算:(1)(a+b)(a-b);(2);(3).(四)课堂小结:1.理解法则中两个“每一项”的含义,不要漏乘重乘,展开括号后,项数等于两个多项式的项数之积(指没有合并同类项)。2.多项式相乘实际上就是多次运用乘法分配律,运算时要注意符号。3.展开括号后有同类项的要合并同类项。(五)作业:课本P40练习2、3.教学后记: 2.2.乘法公式 2.2.1 平方差公式教学目标:(1)知识目标:1、 经历探索平方差公式的过程。 2、 会推导平方差公式,并能运用公式进行简单的运算。3、 会用几何图形说明公式的意义,体会数形结合的思想方法.(2)能力目标:1、在探索平方差的规律的
23、过程中,培养符号感和推导能力。 2、 培养学生观察、归纳、概括的能力。(3)情感目标: 在计算过程中发现规律,并能用符号表示,从而体会数学的简洁美。教学重点: 平方差公式的推导和应用。教学难点: 理解平方差公式的结构和特征,灵活应用平方差公式。教学方法:探究与讲练相结合,通过计算发现规律,进一步探索公式的结构特征,在老师的讲练和学生的练习中让学生体会公式的实质,学会灵活运用。教学过程:一、创设情境,引出课题问题:王剑同学去商店买了单价是9.8元千克的糖块10.2千克,售货员刚拿起计算器,王剑就说出应付99.96元,结果与售货员计算出的结果相同。售货员惊讶地问:“这位同学,你怎么算得这么快?”王
24、剑同学说:“我利用了数学课上刚学过的一个公式。”你知道王剑同学用的是什么数学公式吗?学了本节之后,你就能解决这个问题了. 二、探索新知,尝试发现计算下列多项式的积,你能发现什么规律?(1)(y+1)(y -1)= ;(2)(2+ m)(2- m)= ;(3)(2x+5)(2x-5)= 依照以上四道题的计算回答下列问题: 式子的左边具有什么共同特征?它们的结果有什么特征?能不能用字母表示你的发现?师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出: (a + b)( a -b )= a2 - b2 三、数形结合,几何
25、说理活动探究:将长为(a+b),宽为(ab)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请表示你剪拼前后的图形的面积关系对于任意的a、b,由学生运用多项式乘法计算:(a + b)( a -b )= a2 -ab +ab b2,验证了其公式的正确性 四、总结归纳,发现新知你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差平方差公式:(a + b)( a -b )= a2 - b2 五、剖析公式,发现本质在平方差公式中,其结构特征为: 左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即a2 - b
26、2 ; 六、巩固运用,强化新知 例:1、判断下列算式能否运用平方差公式计算;若不能,请说明理由。(1)(2x+3a)(2x3b); (2)(c21)(c2 + 1);(3)(m+n)(mn); (4) (-2n -3p)(2n -3p);2、判断下列计算是否正确:(1)(23b)(23b)=49b2 ( )(2)(x+2)(x 2)=x22 ( )(3)(3a2)(3a2)=9a24 ( )(4)(m+ 2)(m3) =m26( )3、计算: (1)(2x +3)(2x3); (2)(b+2a)(2ab); (3)(-m +1/2 y)(-m - 1/2 y) (4) (-x + 2y)(-x
27、 - 2y) (你还有其它方法计算吗?)解:(1) (2x + 3) (2x 3)= (2x)2 32 = 4x 29 (a + b) ( a - b )=a2 - b2 七、拓展深化,发展思维 1、计算:(1)98(102); (2)(y + 2)(y 2) (y + 3)(y 1)(3)(ab)(a2+b2) (a+b) 2在下列括号中填上合适的多项式:(1)(5x+ 2y)( )25x2 4y2(2)( )( )81 a23看谁算得快: 八、小结归纳,解决引例1.通过本节课的学习我有哪些收获?2.通过本节课的学习我有哪些疑惑?3.通过本节课的学习我有哪些感受? 九、 作业:必做题:P50
28、习题A 1 、选做题:1A=(2+1)(22+1)(24+1)(28+1),则A的末位数是_ 2计算:(1)x2 + (y + x)(y x);(2)20082 20092007;教学后记:2.2.2完全平方公式(1)教学目标:1、经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;2、会推导完全平方公式,并能运用公式进行简单的计算;3、了解完全平方公式的几何意义。教学重点:1、弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;2、会用完全平方公式进行运算。教学难点:会用完全平方公式进行运算教学方法:探索讨论、归纳总结。教学过程:一、探究新知1、怎样快速地计算呢?2
29、、我们已经会计算,对于上式,能否利用这个公式进行计算呢?3、比较启发学生注意观察,公式中的2x、y相当于公式中的a、b。4、利用公式也可计算5、归纳完全平方公式: 两个公式合写成一个公式: 两数和(或差)的平方,等于它们的平方的和,加上(或减去)它们的积的2倍。 6、完全平方公式的几何意义: 7、范例分析 P104例1、例2例1运用完全平方公式计算:(1) (2) (按教材讲解,并写出应用公式的步骤)例2运用完全平方公式计算:(1) (2) (按教材讲解,并写出应用公式的步骤,特别要注意符号,第1小题可以看作-x与1的和的平方,也可以看作是再进行计算。第2小题可以看作是-2x与-3的和的平方,
30、也可以看作是-2x减去3的平方,同学们可任意选择使用的公式)二、小结与练习1、练习P46练习1、2、32、小结三、布置作业 P50A组第2题教学后记:2.2.2完全平方公式(2)教学目标:1、较熟练地运用完全平方公式进行计算;2、了解三个数的和的平方公式的推导过程,培养学生推理的能力。3、能正确地根据题目的要求选择不同的乘法公式进行运算。教学重点:1、完全平方公式的运用。教学难点:正确选择完全平方公式进行运算。教学方法:探索讨论、归纳总结。教学过程:一、乘法公式复习1、平方差公式:2、完全平方公式: 3、多项式与多项式相乘的运算方法。4、说一说:(1) 与 有什么关系? (2) 与 有什么关系
31、二、乘法公式的运用例1 运用完全平方公式计算:(1) (2) 分析:关键正确选择乘法公式解:(1) = = 100008001610816(2) 40000800439204例2、运用完全平方公式计算:(1)(2)直接利用第(1)题的结论计算:解:(1)启发学生认真观察上述公式,并能自己归纳它的特点。(2)小题中的2x相当于公式中的a,3y相当于公式中的b,z相当于公式中的c。解:(2)=三、小结与练习2 练习P47的练习1、2、3题3 小结四、布置作业运用乘法公式计算:(1)(2)(3)(4)教学后记;运用乘法公式进行计算教学目标:1、熟练地运用乘法公式进行计算; 2、能正确地根据题目的要求
32、选择不同的乘法公式进行运算。教学重点:正确选择乘法公式进行运算。教学难点:综合运用平方差和完全平方公式进行多项式的计算。教学方法:范例分析、探索讨论、归纳总结。教学过程:一、 复习乘法公式1、平方差公式:2、完全平方公式: 3、三个数的和的平方公式:4、运用乘法公式进行计算:(1)(2)(3)二、范例分析 例1运用乘法公式计算:(1)(2)解:(1) 想一想:这道题你还能用什么方法解答?(2)例2、运用乘法公式计算:(1)(2)解:(1) =(2) =注意灵活运用乘法公式,按要求最好能写出详细的过程。三、小结与练习1、练习P49的练习题2、小结:利用乘法公式可以使多项式的计算更为简便,但必须注
33、意正确选择乘法公式。四、布置作业:P50A组 第3题、第4题教学后记:小 结 与 复 习教学目标:1、能较熟练地理解本章所学的公式及运算法则 2、能熟练地进行多项式的计算。教学重点:正确选择运算法则和乘法公式进行运算。教学难点:综合运用所学计算法则及计算公式。教学方法:范例分析、归纳总结。教学过程:一、 各知识点复习1、 整式包括单项式和多项式。2、求多项式的和与差,解题的几个步骤:一是写出和或差的运算式;二是去括号;三是找出同类项,将它们放在一起;四是合并同类项。3、多项式的排列(按某一个字母降幂、升幂排列)。4、同底数幂相乘:aman =am+n(m、n都是正整数)语言叙述:同底数幂相乘,
34、底数不变,指数相乘。5、幂的乘方:(am)n=a mn (m、n为正整数) 语言叙述:幂的乘方,底数不变,指数相乘。6、积的乘方: (n为正整数)文字叙述:积的乘方等于把各个因式分别乘方,再把所得的幂相乘。7、单项式的乘法法则:两个或两个以上的单项式相乘,把系数相乘,同底数幂的底数不变指数相加。(对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式)8、单项式与多项式相乘的法则:即利用乘法的分配律 a(b+c)=ab+ac9、多项式与多项式相乘:(m+n)(a+b)= a(m+n)+b(m+n)=(am+an+bm+bn)多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每
35、一项,再把所得的积相加。10、二项式的乘积: =11、平方差公式: 文字叙述:两个数的和与这两个数的差的积等于这两个数的平方差。12、完全平方公式: 两数和(或差)的平方,等于它们的平方的和,加上(或减去)它们的积的2倍。13*、立方和差公式:14*、完全立方公式:15*、三个数的和的平方公式:一、 范例分析:例1、 计算:(1) 求与的和与差。(2)(3)(4)(5)(6)(7)(8)例2、先化简,再求值:(1) ,其中x=-2,y=-3(2) 例3、解方程: 例4、已知甲数是a,乙数是甲数的2倍多1,丙数比乙数少2,试求甲、乙、丙三数的和与积,并计算a=-5 时的各与积分别是多少。讲解上述
36、例题时注意:1、解题时说明所使用的公式。2、能用多种方法解题的要用多种方法解答。3、要求学生熟练地运用公式进行计算。二、 布置作业P52 复习题四 A组 第1题双数题、第2题、第3题、第4题 教学后记: 第二章单元自测(总分100分 时间70分钟) 一、选择题:(每小题3分,共30分) 1、下列运算正确的是( ) A 3a-4a=-1 B、 C、 D、 2、下列可以用平方差公式计算的式子是( ) A、 B、 C、 D、 3、下列式子中,不成立的是( ) A、B、 C、D、4、若,则的值为( )A、32 B、64 C、128 D、2565、小明在课堂中完成了如下四道计算题:(1);(2); (3
37、); (4);你认为他做错的有( )A、0道 B、1道C、2道D、3道6、如果与的和为M,与的差为N,那么化简后为( )A、 B、 C、 D、7、已知M,那么的正确结果是( )A、 B、 C、 D、8、如果长方形的周长为,一边长为,则另一边长为( )A、 B、 C、 D、9、已知,那么的值为( )A、3 B、7 C、10 D、1010、方程的解为( ) 、 B、 、 、二、填空题:(每小题分,共分)11、若,则12、若,则13、若是一个完全平方式,则14、已知,则15、若,则16、当时,代数式的值是17、一个两位数,个位数为,十位数比个位数大1,那么这个两位数可表示为18、计算:19、已知,则20、观察下列算式,用含有自然数的式子表示你发现的规律:三、解答题:(共40分)21、(每小题5分,共10分)化简下列各式:(1)(2) 22、(本题6分)先化简,再求值:,其中23、(本题7分)已知,求及的值。24、(本题8分)学校决定修建一块长方形草坪,长为50m,宽为30m,并在草坪上修建如图所示的十字路,已知十字路宽m,求:(1)修建的十字路的面积是多少?(2)草坪的面积是多少?25、(本题9分)观察下列等式 将这几个等式左、右两边分别相加,可推导出前几个正奇数的和的公式,即可以用含的代数式表示,请你写出此公式为: .并计算:(1)(2)学后反思:专心-专注-专业
限制150内