高中数学椭圆超经典知识点-典型例题讲解(共9页).doc
《高中数学椭圆超经典知识点-典型例题讲解(共9页).doc》由会员分享,可在线阅读,更多相关《高中数学椭圆超经典知识点-典型例题讲解(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上学生姓名性别男年级高二学科数学授课教师上课时间2014年12月13日第( )次课共( )次课课时: 课时教学课题 椭圆教学目标教学重点与难点选修2-1椭圆知识点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义方程化简的结果是 2若的两个顶点,的周长为,则顶点的轨迹方程是 3.已知椭圆=1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 知识点二:椭圆的标准方程1当焦点在轴上时,椭圆的标准方程:,其
2、中;2当焦点在轴上时,椭圆的标准方程:,其中;注意:1只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2在椭圆的两种标准方程中,都有和;3椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。讲练结合二利用标准方程确定参数1.若方程+=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x轴上的椭圆,则实数k的取值范围是 .(3)表示焦点在y型上的椭圆,则实数k的取值范围是 .(4)表示椭圆,则实数k的取值范围是 .2.椭圆的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3椭圆的焦
3、距为,则= 。4椭圆的一个焦点是,那么 。讲练结合三待定系数法求椭圆标准方程1若椭圆经过点,则该椭圆的标准方程为 。2焦点在坐标轴上,且,的椭圆的标准方程为 3焦点在轴上,椭圆的标准方程为4. 已知三点P(5,2)、(6,0)、(6,0),求以、为焦点且过点P的椭圆的标准方程;知识点三:椭圆的简单几何性质椭圆的的简单几何性质(1)对称性对于椭圆标准方程,把x换成x,或把y换成y,或把x、y同时换成x、y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。(2)范围椭圆上所有的点都位于直线x=a和y=b所围成的矩形内,所以椭圆
4、上点的坐标满足|x|a,|y|b。(3)顶点椭圆的对称轴与椭圆的交点称为椭圆的顶点。椭圆(ab0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(a,0),A2(a,0),B1(0,b),B2(0,b)。线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长和短半轴长。(4)离心率椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。因为ac0,所以e的取值范围是0e1。e越接近1,则c就越接近a,从而越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当a=b时,c=0,这
5、时两个焦点重合,图形变为圆,方程为x2+y2=a2。注意:椭圆的图像中线段的几何特征(如下图):(1),;(2),;(3),,;讲练结合四焦点三角形1椭圆的焦点为、,是椭圆过焦点的弦,则的周长是 。2设,为椭圆的焦点,为椭圆上的任一点,则的周长是多少?的面积的最大值是多少?3设点是椭圆上的一点,是焦点,若是直角,则的面积为 。变式:已知椭圆,焦点为、,是椭圆上一点若,求的面积五离心率的有关问题1.椭圆的离心率为,则 2.从椭圆短轴的一个端点看长轴两端点的视角为,则此椭圆的离心率为 3椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为 4.设椭圆的两个焦点分别为F1、F2,过F2作椭圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 椭圆 经典 知识点 典型 例题 讲解
限制150内