高中数学选修2-1-空间向量与立体几何(共60页).docx
《高中数学选修2-1-空间向量与立体几何(共60页).docx》由会员分享,可在线阅读,更多相关《高中数学选修2-1-空间向量与立体几何(共60页).docx(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 空间向量与立体几何一、知识网络:二典例解析题型1:空间向量的概念及性质例1、有以下命题:如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;为空间四点,且向量不构成空间的一个基底,那么点一定共面;已知向量是空间的一个基底,则向量,也是空间的一个基底。其中正确的命题是( )。 题型2:空间向量的基本运算例2、如图:在平行六面体中,为与的交点。若,则下列向量中与相等的向量是( ) 例3、已知:且不共面.若,求的值.例4、底面为正三角形的斜棱柱ABCA1B1C1中,D为AC的中点,求证:AB1平面C1BD.(三)强化巩固导练1、已知正方体ABCDA1B1C1
2、D1中,点F是侧面CDD1C1的中心,若,求xy的值.2、在平行六面体中,M为AC与BD的交点,若a,b,c,则下列向量中与相等的向量是( )。A-abc Babc Ca-bcD-a-bc3、(2009四川卷理)如图,已知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大是 。 第二课时 空间向量的坐标运算(一)、基础知识过关(二)典型题型探析题型1:空间向量的坐标例1、(1)已知两个非零向量=(a1,a2,a3),=(b1,b2,b3),它们平行的充要条件是()A. :|=:|B.a1b1=a2b2=a3b3C.a1b1+a2b2+a3b3=0D.存在非零实数k,使=k(2)已
3、知向量=(2,4,x),=(2,y,2),若|=6,则x+y的值是()A. 3或1 B.3或1 C. 3 D.1(3)下列各组向量共面的是()A. =(1,2,3),=(3,0,2),=(4,2,5)B. =(1,0,0),=(0,1,0),=(0,0,1)C. =(1,1,0),=(1,0,1),=(0,1,1)D. =(1,1,1),=(1,1,0),=(1,0,1)例2、已知空间三点A(2,0,2),B(1,1,2),C(3,0,4)。设=,=,(1)求和的夹角;(2)若向量k+与k2互相垂直,求k的值.题型2:数量积例3、(1)(2008上海文,理2)已知向量和的夹角为120,且|=2
4、,|=5,则(2)=_.(2)设空间两个不同的单位向量=(x1,y1,0),=(x2,y2,0)与向量=(1,1,1)的夹角都等于。(1)求x1+y1和x1y1的值;(2)求的大小(其中0。题型3:空间向量的应用例4、(1)已知a、b、c为正数,且a+b+c=1,求证:+4。(2)已知F1=i+2j+3k,F2=-2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于同一物体上,使物体从点M1(1,-2,1)移到点M2(3,1,2),求物体合力做的功。(三)、强化巩固训练1、(07天津理,4)设、c是任意的非零平面向量,且相互不共线,则()()= | ()()不与垂直 (3+2)
5、(32)=9|24|2中,是真命题的有( )A. B. C. D.2、已知为原点,向量,求第三课时 空间向量及其运算强化训练(一) 、基础自测1.有4个命题:若p=xa+yb,则p与a、b共面;若p与a、b共面,则p=xa+yb;若=x+y,则P、M、A、B共面;若P、M、A、B共面,则=x+y.其中真命题的个数是( )。A.1 B.2C.3D.42.下列命题中是真命题的是( )。A.分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量B.若|a|=|b|,则a,b的长度相等而方向相同或相反C.若向量,满足|,且与同向,则D.若两个非零向量与满足+=0,则3.若a=(2x,
6、1,3),b=(1,-2y,9),且ab,则( )。A.x=1,y=1B.x=,y=-C.x=,y=-D.x=-,y=4.已知A(1,2,3),B(2,1,2),P(1,1,2),点Q在直线OP上运动,当取最小值时,点Q的坐标是 . 5.在四面体O-ABC中,=a,=b, =c,D为BC的中点,E为AD的中点,则= (用a,b,c表示). (二)、典例探析例1、如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量: (1);(2);(3)+.例2、如图所示,已知空间四边形ABCD的各边和对角线的长都等
7、于a,点M、N分别是AB、CD的中点.(1)求证:MNAB,MNCD;(2)求MN的长;(3)求异面直线AN与CM夹角的余弦值.例3、 (1)求与向量a=(2,-1,2)共线且满足方程ax=-18的向量x的坐标;(2)已知A、B、C三点坐标分别为(2,-1,2),(4,5,-1),(-2,2,3),求点P的坐标使得=(-);(3)已知a=(3,5,-4),b=(2,1,8),求:ab;a与b夹角的余弦值;确定,的值使得a+b与z轴垂直,且(a+b)(a+b)=53.(三)、强化训练:如图所示,正四面体VABC的高VD的中点为O,VC的中点为M.(1)求证:AO、BO、CO两两垂直;(2)求,.
8、补充:1、已知空间四边形ABCD的每条边和对角线的长都等于a,点E、F分别是BC、AD的中点,则的值为( C )A.a2B.C.D.2、已知A(4,1,3),B(2,-5,1),C为线段AB上一点,且=,则C点的坐标为( C )A.B. C.D. 3、如图所示,平行六面体ABCDA1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60. (1)求AC1的长;(2)求BD1与AC夹角的余弦值.立体几何中的向量方法 -空间夹角和距离(三)、基础巩固导练1、在平行六面体ABCD中,设,则x+y+z=(A )A. B. C. D. 2、在正方体ABCD中,M是棱DD1的中点,点O为底面A
9、BCD的中心,P为棱A1B1上任意一点,则异面直线OP与AM所成角的大小为( C )A. B. C. D. 与P点位置无关 3、如图,正方体ABCD中,E、F分别是AB、CC1的中点,则异面直线A1C与EF所成角的余弦值为( B )A. B. C. D. 4、 如图所示,直二面角DABE中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF平面ACE。 (1)求证:AE平面BCE;(2)求二面角BACE的大小;(3)求点D到平面ACE的距离。10、(1)略(2)(3) 第二课时 用向量法求空间夹角热点考点题型探析(一)热点考点题型探析题型1:异面直线所成的角例1、已知正方体A
10、BCDA1B1C1D1的棱长为2,点E为棱AB的中点。求:D1E与平面BC1D所成角的大小(用余弦值表示)题型2:直线与平面所成的角O例2、(09年高考试题)如图,直三棱柱ABCA1B1C1中,底面是等腰直角三角形,ACB90,侧棱AA12,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是ABD的重心G。求A1B与平面ABD所成角的大小(结果用余弦值表示);题型3:二面角例3、(08年高考)在四棱锥PABCD中,ABCD为正方形,PA平面ABCD,PAABa,E为BC中点。(1)求平面PDE与平面PAB所成二面角的大小(用正切值表示);(2)求平面PBA与平面PDC所成二面角的大小
11、。第三课时 用向量法求空间的距离(一)热点考点题型探析题型1:异面直线间的距离例1、如图2,正四棱锥的高,底边长。求异面直线和之间的距离?题型2:点面距离例2、如图,已知为边长是的正方形,分别是,的中点,垂直于所在的平面,且,求点到平面的距离。题型6:线面距离例3、已知正三棱柱的底面边长为8,对角线,D是AC的中点。(1)求点到直线AC的距离。(2)求直线到平面的距离。例4、如图,已知边长为的正三角形中, 、分别为和的中点,面,且,设平面过且与平行。 求与平面间的距离?(二)、强化巩固训练长方体ABCD中,AB=4,AD=6,M是A1C1的中点,P在线段BC上,且|CP|=2,Q是DD1的中点
12、,求:(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。立体几何空间向量知识点总结知识网络:【典型例题】 例1. 已知P是平面四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为PAB、PBC、PCD、PDA的重心。求证:E、F、G、H四点共面。 例2. 如图所示,在平行六面体中,P是CA的中点,M是CD的中点,N是CD的中点,点Q是CA上的点,且CQ:QA=4:1,用基底表示以下向量:(1);(2);(3);(4)。 例3. 已知空间四边形OABC中,AOB=BOC=AOC,且OA=OB=OC。M、N分别是OA、BC的
13、中点,G是MN的中点。求证:OGBC。 例4. 已知空间三点A(0,2,3),B(2,1,6),C(1,1,5)。(1)求以为邻边的平行四边形面积;(2)若,且垂直,求向量的坐标。解:(1)由题中条件可知以为邻边的平行四边形面积:(2)设由题意得解得第二讲 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用 1、直线的方向向量 直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向量可以有无数个 2、直线方向向量的应用 利用直线的方向向量,可以确定空间中的直线和平面(1)若有直线l, 点A是直线l上一点,向量是l的方向向量,在直线l上取,则对于直线l上任
14、意一点P,一定存在实数t,使得,这样,点A和向量不仅可以确定l的位置,还可具体表示出l上的任意点(2)空间中平面的位置可以由上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是和,P为平面上任意一点,由平面向量基本定理可知,存在有序实数对(x,y),使得,这样,点O与方向向量、不仅可以确定平面的位置,还可以具体表示出上的任意点二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量2、在空间中,给定一个点A和一个向量,那么以向量为法向量且经过点A的平面是唯一确定的三、直线方向向量与平面法向量在确定直线、平面位置关系中的应
15、用1、若两直线l1、l2的方向向量分别是、,则有l1/ l2/,l1l22、若两平面、的法向量分别是、,则有/, 若直线l的方向向量是,平面的法向量是,则有l/,l/四、平面法向量的求法 若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:1、设出平面的法向量为2、找出(求出)平面内的两个不共线的向量的坐标3、根据法向量的定义建立关于x,y,z的方程组4、解方程组,取其中一个解,即得法向量五、用向量方法证明空间中的平行关系和垂直关系(一)用向量方法证明空间中的平行关系 空间中的平行关系主要是指:线线平行、线面平行、面面平行 1、线线平行 设直线l1、l
16、2的方向向量分别是、,则要证明l1/ l2,只需证明/,即2、线面平行 (1)设直线l的方向向量是,平面的法向量是,则要证明,只需证明,即. (2)根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可3、面面平行(1)由面面平行的判定定理,要证明面
17、面平行,只要转化为相应的线面平行、线线平行即可(2)若能求出平面、的法向量、,则要证明/,只需证明/ (二)用向量方法证明空间中的垂直关系 空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直1、线线垂直 设直线l1、l2的方向向量分别是、,则要证明l1 l2,只需证明,即 2、线面垂直(1)设直线l的方向向量是,平面的法向量是,则要证l,只需证明/ (2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直3、面面垂直(1)根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直(2)证明两个平面的法向量互相垂直六、用向量方法求空间的角(一)两条异面直线所成的角1、定义:设a、b是两
18、条异面直线,过空间任一点O作直线,则与所夹的锐角或直角叫做a与b所成的角2、范围:两异面直线所成角的取值范围是3、向量求法:设直线a、b的方向向量为、,其夹角为,则有4、注意:两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但两者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角(二)直线与平面所成的角1、定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角2、范围:直线和平面所成角的取值范围是3、向量求法:设直线l的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为,则有(三)二面角1、二面角的取值范围:2、二面角的向量求法(1)若AB
19、、CD分别是二面角的两个面内与棱l垂直的异面直线,则二面角的大小就是向量与的夹角(如图(a)所示)(2)设、是二面角的两个角、的法向量,则向量与的夹角(或其补角)就是二面角的平面角的大小(如图(b)所示)七、用向量的方法求空间的距离(一)点面距离的求法如图(a)所示,BO平面,垂足为O,则点B到平面的距离就是线段BO的长度若AB是平面的任一条斜线段,则在RtBOA中,cosABO=。如果令平面的法向量为,考虑到法向量的方向,可以得到B点到平面的距离为。 因此要求一个点到平面的距离,可以分以下几步完成: 1、求出该平面的一个法向量 2、找出从该点出发的平面的任一条斜线段对应的向量 3、求出法向量
20、与斜线段向量的数量积的绝对值再除以法向量的模,即可求出点到平面的距离 由于可以视为平面的单位法向量,所以点到平面的距离实质就是平面的单位法向量与从该点出发的斜线段向量的数量积的绝对值,即另外,等积法也是点到面距离的常用求法(二)线面距、面面距均可转化为点面距离用求点面距的方法进行求解。(三)两异面直线距离的求法如图(b)所示,设l1、l2是两条异面直线,是l1与l2的公垂线段AB的方向向量,又C、D分别是l1、l2上的任意两点,则l1与l2的距离是。【典型例题】 例1. 设分别是直线l1、l2的方向向量,根据下列条件判断l1与l2的位置关系。(1)=(2,3,1),=(6,9,3);(2)=(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 空间 向量 立体几何 60
限制150内