高中数学竞赛-第23讲-正弦定理与余弦定理教案(共13页).doc
《高中数学竞赛-第23讲-正弦定理与余弦定理教案(共13页).doc》由会员分享,可在线阅读,更多相关《高中数学竞赛-第23讲-正弦定理与余弦定理教案(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第23讲正弦定理与余弦定理本专题涉及到的知识点是正、余弦定理及三角形中的边角关系三角形中边角关系处理的基本方法是化角为边或化边为角,以及向量方法的运用A类例题例在中,分别是角的对边,设求的值(年全国高考卷)分析化角为边转化为三角关系处理解由正弦定理及角变换求解由,得再由三角形内角和定理及得,所以,又,代入到中得,由得,从而,所以例已知的三个内角满足:,求的值(年全国高考卷)分析通过角换元,利用两角和差公式得方程求值解 由题设知,设,则,可得代入条件中得展开得,化简得,即,从而求出即例 在中,已知,边上的中线,求的值(湖北高考卷)分析用坐标和向量方法求解解以为原点,为轴
2、正向建立直角坐标系,且不妨设点在第一象限由,得设,则,由求出(另一负值舍去)于是由数量积得,所以情景再现在中,内角的对边分别是,已知成等比数列,且() 求的值;() 设,求的值(年全国高考卷)已知在中,求角的大小B类例题例内接于单位圆,三个内角的平分线延长后分别交此圆于点,求的值(年全国高中数学联赛)分析用正弦定理化边为角转化为三角式处理解 如图连接,则,故,同理,代入原式得例在中,记,若,求的值(年全国高中数学联赛)分析综合运用正余弦定理,边角关系相互转化求解解 由已知得,又由余弦定理,得,所以,所以,故情景再现在中,求证:C类例题例设非直角的重心为,内心为,垂心为,内角所对的边分别是求证(
3、);();()分析利用三角形中三角函数关系和平面向量的基本定理求证证明()由定比分点的向量形式得,由共线得,即,又,所以图即,由正弦定理可得()由,得,由定比分点公式的向量形式有又下面求,所以由得所以代入即得证()由()知,所以,由是三角形的重心有得代入并利用:整理即得例在非直角中,边长满足() 证明:;() 是否存在函数,使得对于一切满足条件的,代数式恒为定值?若存在,请给出一个满足条件的,并证明之;若不存在,请给出一个理由(年河南省高中数学联赛预赛)分析()化边为角进行三角式的变形;()运用结构特征构造函数证明()由得,和差化积得因为,所以有,展开整理得,故()从要为定值的三角式的结构特征
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 竞赛 23 正弦 定理 余弦 教案 13
限制150内