《(精品)高二数学复习知识点总结.docx》由会员分享,可在线阅读,更多相关《(精品)高二数学复习知识点总结.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学复习知识点总结高二数学温习知识点总结总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回首和分析的书面材料,它能够帮助我们总结以往思想,发扬成绩,为此要我们写一份总结。我们该怎么写总结呢?下面是我为大家采集的高二数学温习知识点总结,仅供参考,大家一起来看看吧。高二数学温习知识点总结1考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,把握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,把握平面向量的基本定理。注意对向量概念的理解,向量是能够自由移动的,平移后所得向量与原向量一样;两个向量无法比拟大小,它们的模可比拟大小。考点二:向
2、量的运算【内容解读】向量的运算要求把握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;把握实数与向量的积运算,理解两个向量共线的含义,会判定两个向量的平行关系;把握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,把握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判定两个平面向量的垂直关系。【命题规律】命题形式主要以选择、填空题型出现,难度不大,考察重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。考点三:定比分点【内容解读】把握线段的定比分点和中点坐标公式,并能熟练应用,求点分有
3、向线段所成比时,可借助图形来帮助理解。【命题规律】重点考察定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考察,若出如今解答题中,难度以中档题为主,偶然也以难度略高的题目。考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考察了向量的知识,三角函数的知识,到达了高考中试题的覆盖面的要求。【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与
4、二次函数结合的问题为主,要注意自变量的取值范围。【命题规律】命题多以解答题为主,属中档题。考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就能够将“形和“数严密地结合在一起.因而,很多平面几何问题中较难解决的问题,都能够转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量详细的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,进而使问题得到解决.【命题规律】命题多以解答题为主,属中等偏难的试题。高二数学温习知识点总结2反正弦函数的导数:正弦函数y=
5、sin_在-/2,/2上的反函数,叫做反正弦函数。记作arcsin_,表示一个正弦值为_的角,该角的范围在-/2,/2区间内。定义域-1,1,值域-/2,/2。反函数求导方法若F(_),G(_)互为反函数,则:F(_)_G(_)=1E.G.:y=arcsin_=sinyy_=1(arcsin_)_(siny)=1y=1/(siny)=1/(cosy)=1/根号(1-sin2y)=1/根号(1-_2)其余依此类推高二数学温习知识点总结3第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会
6、画图,集合的“并、补、交、非也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮温习中一定要反复去记这些概念,的方法是写在笔记本上,天天至少看上一遍。第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必需要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,
7、这也是常考常错点。另外指数函数和对数函数的对立关系及其互相之间要如何转化问题也要了解清楚。第三章:函数的应用。主要就是函数与方程的结合。其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵敏转化,以求能最简单的解决问题。关于证实零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证实方法都要记得,多练习强化。这二次函数的零点的判别法,这个倒不算难。高二数学温习知识点总结41.不等式证实的根据(2)不等式的性质(略)(3)重要不等式:|a|0;a20;(a-b)20(a、bR)a2+b
8、22ab(a、bR,当且仅当a=b时取“=号)2.不等式的证实方法(1)比拟法:要证实ab(a0(a-b高二数学温习知识点总结5导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量y与自变量增量x的比值在x趋于0时的极限a假如存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的.导数描绘了这个函数在这一点附近的变化率。假如函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移
9、对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x?f(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的经过称为求导。本质上,求导就是一个求极限的经过,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数可以以倒过来求原来的函数,即不定积分。微积分基本定理讲明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。高二数学温习知识点总结6简单
10、随机抽样1.总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性一样(概率相等),样本的每个单位完全独立,相互间无一定的关联性和排挤性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。3.简单随机抽样常用的方法:抽签法;随机数表法;计算机模拟法;使用统计软件直
11、接抽取。在简单随机抽样的样本容量设计中,主要考虑:总体变异情况;允许误差范围;概率保证程度。4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,施行抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来讲,应是随机的,
12、即不存在某种与研究变量相关的规则分布。能够在调查允许的条件下,从不同的样本开场抽样,比照几次样本的特点。假如有明显差异,讲明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。由于它对抽样框的要求较低,施行也比拟简单。更为重要的是,假如有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样能够大大提高估计精度。分层抽样1.分层抽样(类型抽样):先将总体中的所有单位根据某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后
13、,将这些子样本合起来构成总体的样本。两种方法:1.先以分层变量将总体划分为若干层,再根据各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整洁排列,最后用系统抽样的方法抽取样本。2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。分层标准:(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在构造的变量作为分层变量。(3)以那些有明显分层区分的变量作为分层变量。3.分层的比例问题:(1)按比例分层抽样:
14、根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行互相比拟。假如要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例构造。用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,假如抽样的方法比拟合理,那么样本能够反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。固然我们用样本数据得到的分布、均值和标准差并不是总体的真正的
15、分布、均值和标准差,而只是一个估计,但这种估计是合理的,十分是当样本量很大时,它们确实反映了总体的信息。4.(1)假如把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)假如把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的值和最小值对标准差的影响,区间的应用;“去掉一个分,去掉一个最低分中的科学道理两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.最小二乘法3.直线回归方程的应用(1)描绘两变量之间的依存关系;利用直线回归方程即可定量描绘两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目的。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。4.应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,先作出散点图;(3)回归直线不要外延。【高二数学温习知识点总结】
限制150内