《电力系统负荷的混沌预测方法研究-精品文档.docx》由会员分享,可在线阅读,更多相关《电力系统负荷的混沌预测方法研究-精品文档.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电力系统负荷的混沌预测方法研究导语:电力负荷预测是规划电力系统的根据,直接影响着电力系统的安全、经济的运行。随着我国电力事业的飞速发展,对电力负荷预测准确性的要求越来越高。摘要:随着对电力系统负荷预测的研究不断获得新进展,混沌预测作为一种新兴且有效的预测方法引起了人们的重点关注。文章基于混沌理论,对电力系统负荷的混沌预测方法做了扼要的阐述,并介绍了几种常用且有效的混沌预测方法。关键词:混沌理论;预测;电力系统;负荷随着我国电力事业的不断发展,对电力负荷的预测方法也不断进步。准确的电力负荷预测不仅是电力系统规划的基础,也关系着我国的电力系统经济、安全地运行。影响电力负荷预测准确性的因素很多,涉及
2、到政治、经济、文化以及日照、雨量、温度、湿度等。因而电力负荷预测是一项特别复杂的工作,具有不确定性和非线性的特点。混沌是一种由确定性系统产生,对初始条件有敏感依靠性的非周期运动,是介于确定性与随机性之间的一种行为。把混沌理论用于电力负荷预测是一种科学上的创新。1电力负荷的预测方法总的来讲,如今常用的电力负荷预测方法大致能够分为两类。第一类是传统预测方法,这类方法包括时间序列法、回归模型法、最小二乘法等,其基础是数学理论;第二类是当代预测方法,是利用人工智能领域的模糊数学、神经网络、专家系统、灰色理论等研究成果不断发展起来的负荷预测方法1。经常使用的卡尔曼滤波法、时间序列法、指数平滑法、回归分析
3、法等电力负荷预测方法都存在着局限性,预测的精度不高。随着我国各行各业对电力的需求加大,新的负荷预测方法研究也相应产生。2电力负荷的混沌特征分析2.1重构相空间根据重构相空间理论,时间序列分析是能够引用混沌理论的,电力负荷的混沌预测方法即是根据重构相空间理论而产生的。将电力负荷序列用m1,m2,m3,mj表示,空间向量用下面方程表示N1=(m1,m1+s,m1+(x-1)s)T,N2=(m2,m2+s,m2+(x-1)s)T,Ni=(mN,mN+s,mN+(x-1)s)T.在以上表达式中,j为嵌入维数,s为延迟时间,N=j-(x-1)s为向量序列的有效长度。选择适当的s和x,微分同胚意义下的原系
4、统的动力学等价即为集合在嵌入空间的轨线。合理的选择延迟时间s和嵌入维数x,是电力负荷序列的相空间重构的关键。选择的s和x数值过大或过小都会使负荷序列的相空间不能充分展现负荷动力的特性。2.2电力负荷的混沌特征影响电力负荷的因素较多,包括政治条件、季节不同、气候条件以及社会发展状况等,因而使得实际上混沌的电力负荷序列是随机变化的。混沌预测的前提是对电力负荷序列的混沌性识别。识别电力负荷序列的混沌性能够从负荷序列的谱特征Poincare映象、相空间图形等角度着手。在对混沌系统的奇怪吸引子进行描绘时,应该先着手研究在整个吸引子或无穷长的轨道上的动力系统之特征量,如Kolmogorov熵、Lyapun
5、ov指数、饱和关联维数等2。此外,还能够根据C-C方法、信息论法、真实矢量场法等方法对负荷序列的混沌性进行识别。在识别电力负荷的混沌性特征时,应该用不同方法、从不同角度,以到达准确识别的目的。3混沌预测方法近期几年来,电力负荷的混沌预测方法逐步兴起。在采用混沌方法对电力负荷进行预测时,主要根据电力负荷的历史时间序列而不需要引入假设,排除了人的主观性,因而预测比拟准确可信,提高了预测的精度和可信度。电力负荷的混沌预测方法包括下面几种。3.1全域法将轨迹中的全部点作为拟合对象,找出拟合对象规律的方法即所谓的全域法。在使用全域法进行预测时,由于拟合对象中有些离预测的时间点比拟远的数据,难以反映将来的
6、变化情况,再加上实际历史数据的有限性等,影响了预测的准确性。因而这种方法并不实用。3.2局域法局域法的原理是根据拟合的相关点估计轨迹下一点走向,进而根据轨迹点的坐标得出预测值的坐标,以到达预测的目的。其中的相关点是指离相空间某个中心点近期的一些列轨迹点。局域法适用的范围较广而且具有实用性。3.3加权零阶局域法在上述重构电力负荷相相空间的算法中,在对相空间中轨迹点进行拟合时,考虑中心点与相空间中各个轨迹点之间的距离。在采用加权零阶局域法对电力负荷进行预测时,一个重要的参数就是中心点与各轨迹点之间的距离,与相空间中的中心点距离近期的那些轨迹点是决定预测能否准确的主要因素。因而,加权零阶局域法将中心
7、点与轨迹点之间的空间距离作为电力负荷预测参数引入预测经过能够提高对电力负荷预测的准确性。在加权零阶局域法中,轨迹点在负荷预测中所占的比重与轨迹点到中心点的空间距离是成正比的。3.4基于最大Lyapunov指数的预测运动状态对运动的初值条件极为敏感混沌运动最基本的特点。很接近的2个运动初值所产生的运动轨道将按指数的方式随时间推移而不断的分离,其中描绘这个指数的量就能够用Lyapunov指数。当Lyapunov指数0时,则相邻点随着时间的推移会不断的靠拢最终合并成1个点,这种情况能够描绘不动点以及周期的运动;当Lyapunov指数0时,则2个相邻点最终随着时间推移而不断远离,这种情况能够描绘运动轨
8、道不稳定的运动。假如0时的运动轨道还有耗散、整体有界、存在捕捉区域等整体的稳定因子,则会导致反复折叠的运动形式并构成混沌吸引子。因而,判定系统能否属于混沌行为的一种重要标准是故0。在计算的时候只需要知道最大的Lyapunov指数能否大于0,便能够判定其序列能否为混沌序列。将系统的混沌吸引子用时间序列重建在高维相空间(拓扑构造未改变)里,合理的选择时间间隔t和延滞时间s即能够把存在于相空间里的较短的演化经过转化预测问题来进行分析和研究。相空间重构能够保存很多的混沌吸引子性质,这种优势在于即便基础比拟浅的研究者也有可能成功的研究系统动力学。假定有一混沌时间序列的变量m1,m2,mi,其序列时间间隔
9、(单位时间)为t,延滞时间为s,嵌入维数为j,设jM(t)=(m(t),m(t-s),mt-(x-1)s),令nk=(mk,mk+s,mk+2s,mk+(m-1)s)T,其中k=1,2,i-(j-1)s,nk为相点。序列nk在j维空间中构成1个相型,能够用于表示在某一霎时该系统的状态。将这些状态点按时间增长的顺序连接起来就能够用来描绘系统在j维相空间中的运动轨迹。4结束语电力负荷预测是规划电力系统的根据,直接影响着电力系统的安全、经济的运行。随着我国电力事业的飞速发展,对电力负荷预测准确性的要求越来越高。使电力负荷预测方法研究具有了非常重要的现实意义。电力负荷的混沌预测方法是一种比拟有效、且准确度较高的预测方法,应引起人们的足够重视。参考文献: 1罗海洋,刘天琪,李兴源.风电场短期风速的混沌预测方法J.电网技术,2009(9):22-27. 2夏昌浩,张毓哲.电力系统负荷预报方法综述J.电力学报,2011(22):63-65.【电力系统负荷的混沌预测方法研究】
限制150内