( 全 国 2 卷 ) 2 0 1 6 年 理 科 数 学 真 题 ( 含 答 案 解 析 ).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《( 全 国 2 卷 ) 2 0 1 6 年 理 科 数 学 真 题 ( 含 答 案 解 析 ).pdf》由会员分享,可在线阅读,更多相关《( 全 国 2 卷 ) 2 0 1 6 年 理 科 数 学 真 题 ( 含 答 案 解 析 ).pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2016 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 理科数学 理科数学 注意事项:注意事项: 1.本试卷分第卷本试卷分第卷(选择题选择题)和第卷和第卷(非选择题非选择题)两部分两部分.第卷第卷 1 至至 3 页,第卷页,第卷 3 至至 5 页页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回考试结束后,将本试题和答题卡一并交回. 第卷 第卷 一一. 选择题:本题共
2、选择题:本题共 12 小题,每小题小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知(3)(1)izmm=+在复平面内对应的点在第四象限,则实数 m 的取值范围是( ) (A)( 31) ,(B)( 13) ,(C)(1,)+(D)(3) - ,(2)已知集合1,A=2,3, |(1)(2)0,Bxxxx=+Z,则AB =( ) (A)1(B)12,(C)012 3, , ,(D) 1012 3 , , , ,(3)已知向量(1,)(3, 2)m=, =ab b,且() a+bbbb,则 m=( ) (A
3、)8 (B)6 (C)6 (D)8 (4)圆2228130 xyxy+=的圆心到直线10axy+ =的距离为 1,则 a=( ) (A)43(B)34 (C)3 (D)2 (5)如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ) (A)24 (B)18 (C)12 (D)9 (6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载:http:/ (B)24 (C)28 (D)32 (7)若将函数 y=2sin 2x 的图像
4、向左平移12个单位长度,则平移后图像的对称轴为( ) (A)x=k26 (kZ) (B)x=k2+6 (kZ) (C)x=k212 (kZ) (D)x=k2+12 (kZ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的 a 为 2,2,5,则输出的 s=( ) (A)7 (B)12 (C)17 (D)34 (9)若 cos(4)= 35,则 sin 2=( ) (A)725 (B)15 (C)15 (D)725(10) 从区间0,1随机抽取 2n 个数1x,2x, ,nx,1y,2y, ,ny, 构成 n 个数对()1
5、1,x y,()22,xy, ,(),nnxy, 其中两数的平方和小于1的数对共有m个, 则用随机模拟的方法得到的圆周率的近似值为 ( )学科&网 (A)4nm(B)2nm(C)4mn (D)2mn该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载:http:/ 已知F1,F2是双曲线E:22221xyab=的左, 右焦点, 点M在E上, M F1与x轴垂直, sin2113MF F=,则 E 的离心率为( ) (A)2(B)32 (C)3(D)2 (12)已知函数( )()f x xR满足()2( )fxf x=,学.科网若函数1xyx+=与( )yf x=图像的交点为1122(
6、,),(,),(,),mmx yxyxy则1()miiixy=+=( ) (A)0 (B)m (C)2m (D)4m 第 II 卷 本卷包括必考题和选考题两部分.第(13)题第(21)题为必考题,每个试题考生都必须作答.第(22)题第(24)题为选考题,考生根据要求作答. 二、填空题:本题共 4 小题,每小题 5 分 (13)ABC 的内角 A,B,C 的对边分别为 a,b,c,若 cos A=45,cos C=513,a=1,则 b= . (14)、 是两个平面,m、n 是两条直线,有下列四个命题:(1)如果 mn,m,n,那么 . (2)如果 m,n,那么 mn. (3)如果 ,m,那么
7、m. 学科.网 (4)如果 mn,那么 m 与 所成的角和 n 与 所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) (15)有三张卡片,分别写有 1 和 2,1 和 3,2 和 3。甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说: “我与乙的卡片上相同的数字不是 2” ,学.科网乙看了丙的卡片后说: “我与丙的卡片上相同的数字不是1” ,丙说: “我的卡片上的数字之和不是 5” ,则甲的卡片上的数字是 。 (16)若直线 y=kx+b 是曲线 y=lnx+2 的切线,也是曲线 y=ln(x+1)的切线,则 b= 。 三.解答题:解答应写出文字说明、证明过程或演算步骤. 该文档
8、是极速PDF编辑器生成,如果想去掉该提示,请访问并下载:http:/ 12 分) nS为等差数列 na的前 n 项和,且17=128.aS =,记= lgnnba,其中 x表示不超过 x 的最大整数,如0.9 =0 lg99 =1,. (I)求111101bbb,; (II)求数列 nb的前 1 000 项和. 18.(本小题满分 12 分) 某险种的基本保费为 a(单位:元) ,继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数 0 1 2 3 4 5 保费 0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险
9、次数与相应概率如下:一 年 内 出险次数 0 1 2 3 4 5 概率 0.30 0.15 0.20 0.20 0.10 0. 05 (I)求一续保人本年度的保费高于基本保费的概率; (II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60%的概率; (III)求续保人本年度的平均保费与基本保费的比值. 19.(本小题满分 12 分) 如图,菱形 ABCD 的对角线 AC 与 BD 交于点 O,AB=5,AC=6,点 E,F 分别在 AD,CD 上,AE=CF=54,EF交 BD 于点 H.将DEF 沿 EF 折到D EF的位置,10OD =. 学.科.网 (I)证明:D H平
10、面 ABCD; (II)求二面角BDA C的正弦值. 20. (本小题满分 12 分) 该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载:http:/ E:2213xyt+=的焦点在x轴上,A 是 E 的左顶点,斜率为 k(k0)的直线交 E 于 A,M 两点,点 N 在E 上,MANA. (I)当 t=4,AMAN=时,求AMN 的面积; (II)当2 AMAN=时,求 k 的取值范围.(21) (本小题满分 12 分) (I)讨论函数xx2f(x)x2=+e的单调性,并证明当x0 时,(2)20;xxex+(II)证明: 当0,1)a时, 函数2x =(0)xeaxagxx(
11、)有最小值.设 g (x) 的最小值为( )h a, 求函数( )h a的值域. 请考生在请考生在 22、23、24 题中任选一题作答题中任选一题作答,如果多做如果多做,则按所做的第一题计分则按所做的第一题计分,做答时请写清题号做答时请写清题号 (22) (本小题满分 10 分)选修 4-1:几何证明选讲 如图,在正方形 ABCD,E,G 分别在边 DA,DC 上(不与端点重合) ,且 DE=DG,过 D 点作 DFCE,垂足为 F. (I) 证明:B,C,G,F 四点共圆; (II)若 AB=1,E 为 DA 的中点,求四边形 BCGF 的面积. 学科&网 (23) (本小题满分 10 分)
12、选修 44:坐标系与参数方程 在直角坐标系 xoy 中,圆 C 的方程为(x+6)2+y2=25. (I)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程; (II)直线 l 的参数方程是 = cos, = sin,(t 为参数),l 与 C 交于 A、B 两点,AB=10,求 l 的斜率。 (24) (本小题满分 10 分) ,选修 45:不等式选讲已知函数( )1122f xxx=+,M 为不等式 f(x) 2 的解集. (I)求 M; 该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载:http:/ a,bM 时,a+b1+ab。 2016 年普通高等学校
13、招生全国统一考试 理科数学答案 2016 年普通高等学校招生全国统一考试 理科数学答案 第卷 第卷 一.选择题: 一.选择题: (1) 【答案】A (2) 【答案】C (3) 【答案】D (4) 【答案】A (5) 【答案】B (6) 【答案】C (7) 【答案】B (8) 【答案】C (9) 【答案】D (10) 【答案】C (11) 【答案】A (12) 【答案】B 第卷 第卷 二、填空题 二、填空题 (13)【答案】2113(14) 【答案】(15) 【答案】1 和 3 (16) 【答案】1ln2该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载:http:/ 三.解答题 17
14、.(本题满分 12 分)【答案】 ()10b =,111b =, 1012b=; ()1893. 【解析】 试题分析: ()先求公差、通项na,再根据已知条件求111101bbb,; ()用分段函数表示nb,学.科.网再由等差数列的前n项和公式求数列 nb的前 1 000 项和 试题解析: ()设na的公差为d,据已知有72128d+=,学.科.网解得1.d =所以na的通项公式为.nan=111101lg10,lg111,lg1012.bbb=()因为0,110,1,10100,2,1001000,3,1000.nnnbnn=所以数列 nb的前1000项和为1 9029003 11893.+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ( 全 国 2 卷 ) 2 0 1 6 年 理 科 数 学 真 题 ( 含 答 案 解 析 ) .pdf
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-16401375.html
限制150内