《初一整式总结.doc》由会员分享,可在线阅读,更多相关《初一整式总结.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初一整式总结初一整式总结整式单项式比如:2x、xy、-6ab、-5、323223232ab代数式多项式比如:2x+xy、xy-6ab-5、10a+a、a+b3其他代数式单项式一、定义:数与字母乘积的代数式。(单独的一个数或单独的一个字母也是单项式)重点提醒:单项式中不能含有加、减运算,只含有乘法、乘方运算和数字作为分母的除法运算,其a+b15+6中分母(除数)不能为0,分母不能为字母。如:ab是单项式,不是单项式。15+62+38+比如:xyx二、单项式的系数重点提醒:33xy单项式包括数字因数和字母因数两个方面,其中数字因数叫单项式的系数。(1)单项式的系数包括数字前面的符号。如-5x2y单
2、项式的系数为-5(2)单项式的系数是带分数时,通常写成假分数。三、单项式的次数单项式的次数:一个单项式中所有字母的指数和叫做这个单项式的次数。重点提醒:(1)单项式的次数仅仅与字母有关,单个字母的次数是1,单独一个非零数的次数是0比如,单项式b次数为1;单项式-6次数为0;单项式7102ab2c次数为4,与102无关(2)在单项式中系数与数字因数有关,次数与字母因数有关。(3)为什么单独一个非零数的次数是01在单项式的次数表示所有字母的指数和,单独一个非零数所指的是一个常数项,常数项里面没有字母,所以常数项的次数是0。2“单独一个”指单项式,“非零数”指常数,“次数”是所有字母的指数和,“0“
3、指所有字母的指数都是0比如单项式-6,也可以看成是-6a0=-61=-6,所以单独一个非零数的次数是0多项式一、定义:几个单项式的和叫多项式,多项式中,每个单项式叫多项式的项,其中不含字母的项叫常数项。二、多项式的次数多项式的次数:在一个多项式中,次数最高的项的次数叫这个多项式的次数重点提醒:(1)多项式中,每个单项式叫多项式的项,项包括它前面的符号。如:多项式x3+x2y-xy-6,它的项包括x3、x2y、-xy、-6(2)多项式的次数不是所有项的次数之和,而是次数最高项的次数。如:多项式x3+x2y-xy-6,它是三次四项式,最高次项是x3、x2y33其中特别关注含x的最高次项是x,含x的
4、最高次项的系数是1(x的系数)(3)多项式没有系数概念,但对多项式中的每一项来说都有系数。(4)多项式有加减运算,而单项式则没有。(5)多项式是由单项式组成,因此,它们的代数式中都不含有字母的分母。整式的加减整式的加减法实质是合并同类项,基本步骤:(1)去括号;(2)合并同类项当算式中没有同类项时,这个算式就是运算的最后结果。同类项:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。合并同类项:把多项式中同类项合成一项,叫做合并同类项同类项的合并应遵照法则进行:把同类项的系数相加,字母和字母的指数不变。重点提醒:(1)去括号法测:括号前是“-”号时,
5、切记去掉括号后,原括号内的各项都要改变符号。(2)合并同类项前一定要先判断谁与谁是同类项,项数很多时,我们通常在同类项下面做上相同的标记。同底数幂的乘法同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。即:am.bn=am+n重点提醒:(1)当含有负号时,先进行符合号运算,以确定积的符号。-x3.x5=-(x3.x5)=-x8(2)数乘以幂的积的乘法是根据乘法的交换律和结合律进行变形,化成数与数相乘,幂与幂相乘的,最后求其积。如(4108)(3.6103)=(43.6)108103=14.41011=1.441012(科学计数法)(3)在同底数幂的乘法运算时,一定要弄清底数是什么,指数是什
6、么,是不是同底数幂。(4)公式中的底数a可以是单独一个数或字母,也可以是单项式或多项式。(5)单独一个字母,其次数是1。比如a.a3=a1+3=a4(6)底数为和、差或其他形式的幂相乘,应把这些和或差看成一个整体。比如(a+b)2.(a+b)3=(a+b)2+3=(a+b)5(7)当底数不同,但满足底数互为相反数时,可以通过转化的方法变成同底数幂。比如(x-5y)3.(5y-x)4=(x-5y)3.(x-5y)4=(x-5y)7幂的乘方运算性质:幂的乘方,底数不变,指数相乘。(am)n=am.n,逆运算am.n=(am)n重点提醒:幂的乘方与同底数幂的乘法综合运算时,应先算乘方,再算乘法,处理
7、性质符合问题十分关键,注意不能因“小符号”而误“大结果”。比如a.(a2)3.(-a2)=a.a23.(-a2)=-(a.a6.a2)=-a9积的乘方积的乘方:等于每一个因数乘方的积。步骤:先把每个因式乘方,然后把所得的幂相乘。(ab)n=anbn,逆运算anbn=(ab)n重点提醒:应用积的乘方法则时,特别注意观察底数含有几个因式,每个因式都分别乘方;注意系数及系数符号,“”不可忽略。如(-3x)3=(-3)3x3=-27x扩展阅读:整式总结解析整式的加减知识点一、代数式与有理式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。2、整式和分式统称为有理
8、式。3、含有加、减、乘、除、乘方运算的代数式叫做有理式。二、整式和分式1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。2、有除法运算并且除式中含有字母的有理式叫做分式。三、单项式与多项式1、没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。说明:根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。单项式1、都是数字与字母的乘积的代数式
9、叫做单项式。2、单项式的数字因数叫做单项式的系数。3、单项式中所有字母的指数和叫做单项式的次数。4、单独一个数或一个字母也是单项式。5、只含有字母因式的单项式的系数是1或1。6、单独的一个数字是单项式,它的系数是它本身。7、单独的一个非零常数的次数是0。8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。9、单项式的系数包括它前面的符号。10、单项式的系数是带分数时,应化成假分数。11、单项式的系数是1或1时,通常省略数字“1”。12、单项式的次数仅与字母有关,与单项式的系数无关。多项式1、几个单项式的和叫做多项式。2、多项式中的每一个单项式叫做多项式的项。3、多项式中不含字母的项
10、叫做常数项。4、一个多项式有几项,就叫做几项式。5、多项式的每一项都包括项前面的符号。6、多项式没有系数的概念,但有次数的概念。7、多项式中次数最高的项的次数,叫做这个多项式的次数。整式1、单项式和多项式统称为整式。2、单项式或多项式都是整式。3、整式不一定是单项式。4、整式不一定是多项式。5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。2、
11、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。合并同类项:1).合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。2).合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。3).合并同类项步骤:a准确的找出同类项。b逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。c写出合并后的结果。4).在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。说明:合并同类项的关键是正确判断同类项。3、几个整式相加减的一
12、般步骤:1)列出代数式:用括号把每个整式括起来,再用加减号连接。2)按去括号法则去括号。3)合并同类项。4、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。五、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,nn为指数,a的结果叫做幂。2、底数相同的幂叫做同底数幂。mnm+n3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aa=a。4、此法则也可以逆用,即:am+n=aman。5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。六、幂的
13、乘方1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。3、此法则也可以逆用,即:amn=(am)n=(an)m。七、积的乘方1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。3、此法则也可以逆用,即:anbn=(ab)n。八、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aman=am-n(a0)。m-nmn2、此法则也可以逆用,即:a=aa(a0)。九、零指数幂1、零指数幂的意义:任何不
14、等于0的数的0次幂都等于1,即:a0=1(a0)。十、负指数幂1、任何不等于零的数的p次幂,等于这个数的p次幂的倒数。注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。十一、整式的乘法(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。2、系数相乘时,注意符号。3、相同字母的幂相乘时,底数不变,指数相加。4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。5、单项式乘以单项式的结果仍是单项式。6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。(二)单项式与多项式相乘1、
15、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。2、运算时注意积的符号,多项式的每一项都包括它前面的符号。3、积是一个多项式,其项数与多项式的项数相同。4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一
16、项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。4、运算结果中有同类项的要合并同类项。5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。十二、平方差公式1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。2、平方差公式中的a、b可以是单项式,也可以是多项式。3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。4、平方差公式还能简化两数之积的运算,解
17、这类题,首先看两个数能否转化成(a+b)(a-b)的形式,然后看a2与b2是否容易计算。十三、完全平方公式1、(ab)2=a22ab+b2即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。2、公式中的a,b可以是单项式,也可以是多项式。十四、整式的除法(一)单项式除以单项式的法则1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。(二)多项式除以单项式的法则1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。2、多项式除以单项式,注意多项式各项都包括前面的符号。第 10 页 共 10 页
限制150内