导数及其应用 知识点总结.doc
《导数及其应用 知识点总结.doc》由会员分享,可在线阅读,更多相关《导数及其应用 知识点总结.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、导数及其应用 知识点总结导数及其应用 知识点总结导数及其应用知识点总结1、函数fx从x1到x2的平均变化率:fx2fx1x2x1xx0f(x0x)f(x0)x2、导数定义:fx在点x0处的导数记作yf(x0)lim;处的切线的斜率x03、函数yfx在点x0处的导数的几何意义是曲线4、常见函数的导数公式:yfx在点x0,fx0C0;(xn)nxn1;(sinx)cosx;(cosx)sinx;(ax)axlna;(ex)ex;(log5、导数运算法则:ax)1xlna;(lnx)1x1fxgxfxgx;fxgxfxgxfxgx;2fxfxgxfxgxgx02gx3gx6、在某个区间a,b内,若f
2、x0,则函数yfx在这个区间内单调递增;若fx0,则函数yfx在这个区间内单调递减7、求解函数yf(x)单调区间的步骤:(1)确定函数yf(x)的定义域;(2)求导数yf(x);(3)解不等式f(x)0,解集在定义域内的部分为增区间;(4)解不等式f(x)0,解集在定义域内的部分为减区间8、求函数yfx的极值的方法是:解方程fx0当fx00时:1如果在x0附近的左侧fx0,右侧fx0,那么fx0是极大值;fx0,右侧fx0,那么fx0是极小值2如果在x0附近的左侧9、求解函数极值的一般步骤:(1)确定函数的定义域(2)求函数的导数f(x)(3)求方程f(x)=0的根(4)用方程f(x)=0的根
3、,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f(x)在方程f(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况10、求函数yfx在a,b上的最大值与最小值的步骤是:1求函数yfx在a,b内的极值;2将函数yfx的各极值与端点处的函数值fa,fb比较,其中最大的一个是最大值,最小的一个是最小值扩展阅读:高中数学人教版选修2-2导数及其应用知识点总结数学选修2-2导数及其应用知识点必记1函数的平均变化率是什么?答:平均变化率为f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自变量的改变量,可正,可负,可零。注2:函数的平均变化率可以看作是物体运动的
4、平均速度。2、导函数的概念是什么?答:函数yf(x)在xx0处的瞬时变化率是limf(x0x)f(x0)y,则称limx0xx0x函数yf(x)在点x0处可导,并把这个极限叫做yf(x)在x0处的导数,记作f(x0)或y|xx0,即f(x0)=limf(x0x)f(x0)y.limx0xx0x3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。5、常见的函数导数和积分公式有哪些?函数导函数不定积分ycy0xn1xdxn1nyxnnN*ynxn1yaxa0,a
5、1yalnayexxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy1xlna1x1xdxlnxyysinxycosxcosxdxsinxsinxdxcosxycosxysinx6、常见的导数和定积分运算公式有哪些?答:若fx,gx均可导(可积),则有:和差的导数运算f(x)g(x)f(x)g(x)f(x)g(x)f(x)g(x)f(x)g(x)积的导数运算特别地:CfxCfx商的导数运算f(x)f(x)g(x)f(x)g(x)(g(x)0)g(x)2g(x)1g(x)特别地:2gxgx复合函数的导数yxyuux微积分基本定理fxdxab(其中Fxfx)和差的积分运算
6、baf1(x)f2(x)dxf1(x)dxf2(x)dxaabb特别地:积分的区间可加性bakf(x)dxkf(x)dx(k为常数)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb6.用导数求函数单调区间的步骤是什么?答:求函数f(x)的导数f(x)令f(x)0,解不等式,得x的范围就是递增区间.令f(x)8.利用导数求函数的最值的步骤是什么?答:求f(x)在a,b上的最大值与最小值的步骤如下:求f(x)在a,b上的极值;将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。注:实际问题的开区间唯一极值点就是所求的最值点;9求曲边梯形的思想和
7、步骤是什么?答:分割近似代替求和取极限(“以直代曲”的思想)10.定积分的性质有哪些?根据定积分的定义,不难得出定积分的如下性质:性质11dxbaababbbbb性质5若f(x)0,xa,b,则f(x)dx0推广:f1(x)f2(x)fm(x)dxf1(x)dxf2(x)dxfm(x)aaaa推广:f(x)dxf(x)dxf(x)dxf(x)dxaac1ckbc1c2b11定积分的取值情况有哪几种?答:定积分的值可能取正值,也可能取负值,还可能是0.(l)当对应的曲边梯形位于x轴上方时,定积分的值取正值,且等于x轴上方的图形面积;(2)当对应的曲边梯形位于x轴下方时,定积分的值取负值,且等于x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数及其应用 知识点总结 导数 及其 应用 知识点 总结
限制150内