高一数学必修1知识点总结及练习题.doc
《高一数学必修1知识点总结及练习题.doc》由会员分享,可在线阅读,更多相关《高一数学必修1知识点总结及练习题.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学必修1知识点总结及练习题高一数学必修1知识点总结及练习题高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y(3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数
2、集R1)列举法:a,b,c2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR|x-32,x|x-323)语言描述法:例:不是直角三角形的三角形4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B(55,且55,则5=5)实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等”即:任
3、何一个集合是它本身的子集。AA真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)如果AB,BC,那么AC如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算交集并集补集类型定由所有属于A且属由所有属于集合A或设S是一个集合,A是义于B的元素所组成属于集合B的元素所S的一个子集,由S中的集合,叫做A,B的组成的集合,叫做A,B所有不属于A的元素组成的集合,叫做S中子交集记作AB(读的并集记作:AB集A的补集(或余集)作A交B),即(读作A并B
4、),记作CSA,即AB=x|xA,且即AB=x|xA,xB或xB)CSA=x|xS,且xA韦恩ABABS图A示图1图2性AA=AAA=A(CuA)(CuB)A=A=A=Cu(AB)AB=BAAB=BAABAAB(CuA)(CuB)质ABBABB=Cu(AB)A(CuA)=UA(CuA)=例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2.集合a,b,c的真子集共有个3.若集合M=y|y=x2-2x+1,xR,N=x|x0,则M与N的关系是.4.设集合A=x1x2,B=xxa,若AB,则a的取值范围是5.50名学生做的物理、化学两
5、种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.7.已知集合A=x|x2+2x-8=0,B=x|x2-5x+6=0,C=x|x2-mx+m2-19=0,若BC,AC=,求m的值二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作:y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对
6、应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域注意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致(两点必须同时具备)(见课本21页
7、相关例2)2值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5映射一般地,设A、B是两个非空的集合,
8、如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:AB来说,则应满足:集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个;不要求集合B中的每一个元素在集合A中都有原象。6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则y=f
9、g(x)=F(x)(xA)称为f、g的复合函数。二函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1(C)复合函数的单调性复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数(2)奇函数一般地,对于函数f(x)的定义域内的任意一个
10、x,都有f(x)=f(x),那么f(x)就叫做奇函数(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称利用定义判断函数奇偶性的步骤:1首先确定函数的定义域,并判断其是否关于原点对称;2确定f(x)与f(x)的关系;3作出相应结论:若f(x)=f(x)或f(x)f(x)=0,则f(x)是偶函数;若f(x)=f(x)或f(x)f(x)=0,则f(x)是奇函数注意:函数定义域关于原点对称是函数具有奇偶性的必要条件首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)f(x)=0或f(x)f(-x)=1来判定
11、;(3)利用定理,或借助函数的图象判定.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10函数最大(小)值(定义见课本p36页)1利用二次函数的性质(配方法)求函数的最大(小)值2利用图象求函数的最大(小)值3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单
12、调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域:yx22x15x33y1(x12x1)2.设函数f(x)的定义域为0,1,则函数f(x2)的定义域为_3.若函数f(x1)的定义域为2,3,则函数f(2x1)的定义域是4.函数x2(x1)f(x)x2(1x2),若f(x)3,则x=2x(x2)5.求下列函数的值域:yx22x3(xR)yx22x3x1,2(3)yx12x(4)yx24x56.已知函数f(x1)x24x,求函数f(x),f(2x1)的解析式7.已知函数f(x)满足2f(x)f(x)3x4,则f(x)=。8.设f(x)是R上的奇函数,且当x0,)时,
13、f(x)x(13x),则当x(,0)时f(x)=f(x)在R上的解析式为9.求下列函数的单调区间:yx22x3yx22x3yx26x110.判断函数yx31的单调性并证明你的结论11.设函数f(x)1x2判断它的奇偶性并且求证:f(1)f(x)1x2x第二章基本初等函数一、指数函数(一)指数与指数幂的运算1根式的概念:一般地,如果xna,那么x叫做a的n次方根,其中n1,且nN*负数没有偶次方根;0的任何次方根都是0,记作n00。n是奇数时,nana,当n是偶数时,nan|a|a(a0)a(a0)2分数指数幂正数的分数指数幂的意义,规定:当mannam(a0,m,nN*,n1),man1m1n
14、N*,n1)annam(a0,m,0的正分数指数幂等于0,0的负分数指数幂没有意义3实数指数幂的运算性质(1)ararars(a0,r,sR);(2)(ar)sars(a0,r,sR);(3)(ab)raras(a0,r,sR)(二)指数函数及其性质1、指数函数的概念:一般地,函数yax(a0,且a1)叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a10如:y2log2x,ylogx5都不是对数函数,而只能称其为对数型5函数2对数函数对底数的限制:(a0,且a1)2、对数函数的性质:a10检验扩展阅读:新课标人教A版
15、高一数学必修1知识点总结高中数学必修1知识点第一章集合与函数概念一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:(1)元素的确定性;(2)元素的互异性;(3)元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具
16、有了确定性和整体性。3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2)集合的表示方法:列举法与描述法。()列举法:把集合中的元素一一列举出来,然后用一个大括号括上。()描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。语言描述法:例:不是直角三角形的三角形数学式子描述法:例:不等式x-32的解集是xR|x-32或x|x-32(3)图示法(文氏图):4、常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数
17、集R5、“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作aA6、集合的分类:1有限集含有有限个元素的集合2无限集含有无限个元素的集合3空集不含任何元素的集合二、集合间的基本关系1.“包含”关系子集对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说两集合有包含关系,称集合A为集合B的子集,记作AB注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA集合A中有n个元素,则集合A子集个数为2n.2“相等”关系(55,且55,则5=5
18、)2实例:设A=x|x-1=0B=-1,1“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=BAB且BA任何一个集合是它本身的子集。AA真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)如果AB,BC,那么AC如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算1交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作”A交B”),即AB=x|xA,且x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 知识点 总结 练习题
限制150内