毕业设计正文(共33页).doc
《毕业设计正文(共33页).doc》由会员分享,可在线阅读,更多相关《毕业设计正文(共33页).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 JIANGSU UNIVERSITY 本 科 生 毕 业 论 文运动目标检测中阴影去除算法的研究与实现 Research and realization of the shadow removing algorithm for Moving object detection学院名称: 计算机科学与通信工程学院 专业班级: 通信工程0602班 学生姓名: 汪雅洁 指导教师姓名: 宋雪桦 指导教师职称: 副教授 2010年6月专心-专注-专业运动目标检测中阴影去除算法的研究与实现专业班级:通信工程0602班 学生姓名:汪雅洁指导教师: 宋雪桦 职 称:副教授摘要 随着计
2、算机视觉技术、电子技术、通信技术的发展,智能视频监控系统作为安全防卫的一种重要手段正在越来越受到人们的重视。由于智能视频监控系统具有监控能力强、安全隐患少、节省人力物力资源的优点。因此,在交通、银行、宾馆、商场等重要场所的监控中有广泛的应用前景。本文首先综合介绍了智能监控系统的发展历史和现状,然后对静止摄像机监控下的运动目标检测、阴影的检测和去除等关键技术进行了比较深入的研究。运动目标检测作为智能视频监控系统中视频处理的第一步,具有非常重要的地位。本文首先对目前运动目标检测方法进行了概括,在详细研究了几种目标检测方法的基础上,确定了目标检测中较好的一种方法,即基于混合高斯模型的方法,用这个算法
3、来提取运动目标。由于日照和灯光等外来因素的影响,造成了提取的运动前景中往往含有阴影。因此,运动目标的阴影检测与去除对于运动目标跟踪、分类和识别等后期处理都是一个关键性问题。由于阴影的存在,会给上述后期处理带来干扰甚至失败。为了去除目标前景的阴影,本文首先分析了阴影产生的机理,了解阴影的特征和人类的视觉特征,针对这些特征以及总结和分类目前己有的各类阴影检测算法的基础上,提出了一种基于RGB颜色模型的阴影检测算法。通过实验对本文的算法进行了验证,证明了该算法能够很好地检测出运动目标的阴影以及将阴影去除,而且易于实现。关键词:视频监控;运动目标检测;混合高斯模型;RGB颜色模型;阴影去除 Resea
4、rch and realization of the shadow removing algorithm for Moving object detectionAbstract Development of the computer vision technology, the electronic and the communication technology, has made the intelligent visual surveillance system an increasingly important safe defense way. Because it has adva
5、ntages of higher quality and less need of investment. So it has cheerful prospect in the applications of surveillance for traffic, bank, hotel, shopping, etc.Both its history and current situation is summarized here, then, a research was made for the key technology of the segmentation of moving obje
6、cts and the detection and removal of shadows.As the initial stage in the visual data processing, moving object detection is a key point. After carefully study of moving object detection methods used presently, a more reliable algorithm is determined, that is, the mixed Gauss model. It was adopted to
7、 detect moving objects.As external factors such as sunlight and lighting effects,resulting in extraction of moving foreground often contain shadow. So, shadows detection and elimination of moving objects is essential to the post-processing such as objects tracking, classification and recognition. Th
8、e existence of shadow will allow the above-mentioned post-processing to fail. In order to remove the shadow of object foreground, this paper first analyze the mechanism of the shadow produced, understand the characteristics of the shadow and the human visual characteristics, then, a method of shadow
9、 detection based on the RGB color model is proposed on the basis of these characteritics and the summary and analysis for various shadow detection. We have conducted many experiments to verify the proposed approach. The results show that the algorithm can detect moving targets to remove the shadow,
10、and easy to implement.Key words Visual Surveillance; Moving Object Detection; Mixed Gaussian Model; RGB color model; Shadow Removal目 录第一章 绪论1.1 引言图像和视频是对客观事物的形象而又生动的描述,是直观而又具体的信息表达形式,对人类而言是最重要的信息载体。特别是在今天这高科技的信息社会里,随着网络、通信和微电子技术的快速发展,以及人民物质生活水平的提高,视频以其直观、方便和内容丰富等特点,日益受到人们的青睐。就因为这样,视频监控系统就成为一种新技术而越来越
11、受到人们的重视。现今人们对安全的需求增强,视频监控系统成为安全防卫的重要手段,由最初的重点部门如银行和公安等行业监控逐渐发展到单个家庭的防盗和安全监控,摄像头越来越多,视频监控系统的使用越来越普遍。传统的数字视频监控系统仅仅提供了视频的捕获、存储、分发等简单的功能,而系统获取的视频信息越来越多,这些海量的视频信息很难在同一时间显示在监控人员面前。除此以外,对视频里的内容还只能靠监控人员来判断。视频监控工作强度很大,它对监控人员的注意力、警惕性、特别是对异常情况的反应能力的要求特别高。一般监控中发生的失误都是由监控人员的注意力不集中造成的。由于人类本身存在的生理疲劳现象,因此不可能长时间连续集中
12、精力监视内容单一的监控场景。为了克服传统视频监控系统产生的困难,智能视频监控系统应运而生,它利用自动视频分析技术进行视频的监控。当盗窃发生或发现到具有异常行为的可疑人时,系统能向保卫人员准确及时地发出警报,从而避免犯罪的发生,同时也减少了雇佣大批监视人员所需要的人力、物力和财力的投入。与传统的传统视频监控相比,能够智能检测与跟踪的数字视频监控具有许多优点1:第一,24小时全天可靠监控。智能视频监控系统将彻底改变以往完全由监控人员对画面进行监视和分析的模式。第二,提高报警精确度。智能视频监控系统能够有效提高报警精确度,大大降低误报和漏报现象的发生。第三,提高响应速度。智能视频监控系统拥有比传统视
13、频监控系统更强大的智能处理能力,它能够检测、识别视频场景中的可疑活动。1.2 视频监控系统的发展和现状视频监控系统是多媒体技术、计算机网络、工业控制和人工智能等技术的综合运用的产物,它正向着视频的数字化、系统的网络化和管理的智能化方向不断发展,并已经逐步深入到社会生活的各个领域。从第一代完全的模拟监控系统,到第二代数字化的视频监控系统,再到第三代分布式视频监控系统,视频监控系统已在过去的二十多年里经历了三个发展阶段2。第一代视频监控系统(VCR)主要是以模拟设备为主的闭路系统,称之为模拟视频监控系统。以模拟信号、图像的处理和传输为基础,多路模拟摄像机产生的模拟信号通过同轴电缆传输到监控室,然后
14、通过预置好的顺序轮流显示,监控人员通过监视器来判断监视场景的情况。图像信息通过视频电缆,以模拟方式传输,一般传输距离不能太远,主要应用于小范围内的监控,监控图像一般只能在控制中心查看。系统的主要特点:(1) 视频、音频信号的采集、传输、存储均为模拟形式,质量最高;(2) 经过了几十年的发展,技术比较成熟,系统功能强大、完善。但该类系统之所以会被淘汰,是因为它存在着一些问题:(1) 只适用于较小的地理范围;(2) 与信息系统无法交换数据;(3) 监控仅限于监控中心,应用灵活性较差;(4) 不易扩展。随着多媒体技术、视频编码压缩技术的飞速发展,以数字技术为核心的视频监控系统迅速崛起,即第二代视频监
15、控系统(DVR)。它依赖于混合模数或全数字的视频传输和处理方法,采用Motion JPEG、H.263、MPEG等多媒体数字压缩技术将视频图像完全数字化,节省了带宽资源,大大提高了图象质量,增强了视频监控的功能。这类监控系统主要在视频监控中可以利用视频分析算法,让监控者只注意感兴趣的事物从而实现自动报警。系统的特点:(1) 视频、音频信号的采集、存储主要为数字形式,质量较高;(2) 系统功能较为强大、完善;(3) 与信息系统可以交换数据;(4) 应用的灵活性较好。DVR系统从监控点到监控中心仍为模拟方式传输,与第一代系统存在着许多相似的缺陷,要实现远距离视频传输需要铺设(租用)光缆、在光缆两端
16、安装视频光端机设备,系统建设成本高,不易维护、且维护费用较大。由于网络带宽增加、计算机处理能力的迅速提高和存储容量的增大,以及各种实用视频信息处理技术的出现,目前视频监控已经进入了全数字化的网络时代,即第三代视频网络系统(NVR)。它利用低价位高性能的计算机网络、移动网络和固定的多媒体通信网络传输监控信号。视频信号在前端进行自动分析处理,然后将有价值的信息通过无线或有线网络传输到监控中心,实现自动视频监控。与第一、二代系统相比,该系统具有的优势:(1) 利用现有的网络资源,不需要为新建监控系统铺设光缆、增加设备,轻而易举地实现远程视频监控;(2) 系统扩展能力强,只要有网络的地方增加监控点设备
17、就可扩展新的监控点;(3) 维护费用低,网络维护由网络提供商维护,前端设备是即插即用、免维护系统;(4) 系统功能强大、利用灵活、全数字化录像方便于保存和检索;(5) 性能稳定,无需专人管理。1.3 本课题研究的目的及意义在如今高度自动化的生活中,安全问题成了第一难事。这需要监控人员时时地在监控,每时每刻的掌握最新的数据,可监控人员又不可能无时无刻在现场监控,这时就必须依靠智能视频监控系统的帮助,视频监控系统的性能好坏也就直接影响到“安全”这个大问题。随着各种新型安保观念的引入,社会各部门、各行业及居民小区纷纷建立起了各自独立的监控系统或报警系统。建立和不断完善安全防卫系统,对保护人员和设备的
18、安全、提高生产和管理的效率、预防犯罪的发生、维护社会经济的稳定起到了重要作用。因此,研究智能视频监控系统具有较深远的现实意义。运动目标的检测是视频监控系统的首要问题,运动目标提取的好坏直接影响到之后的目标跟踪、目标分类等问题。只要有光线存在的地方都免不了阴影的存在,特别是在室外环境下,光线会随着天气的变化而变化,而且光线的方向、强弱等都会因时间的不同而发生无规律的变化,这些情况下阴影具有很强的不确定性。阴影和运动目标与背景之间都有很大的灰度差值,而且阴影与产生阴影的目标具有相同的运动特征,因此阴影常常被错误地检测成前景。这样就会产生与阴影有关的一系列问题,如阴影会造成运动目标形状的变化、目标的
19、合并、甚至目标丢失,这些问题的存在会对后续的目标跟踪、识别、分类产生很大的负面影响。因此,近年来阴影检测和阴影的去除成为智能视频监控技术中研究的一个热点和重点。去除伴随运动目标的阴影,进一步提高运动目标检测的准确性是非常重要的。目标检测算法本身并不能识别阴影和运动目标以及消除阴影,虽然目前阴影检测算法的准确性相对较高,但还是存在着一定的缺陷,因此在现有阴影检测算法的基础上,提出一种定量和定性评估更高的阴影检测算法是非常必要的,消除阴影的影响也更有利于后续的目标跟踪、分类和识别3。1.4 课题主要研究工作及工作安排本文主要研究运动目标检测中的阴影去除,然而阴影的检测与去除通常与运动检测联系在一起
20、,因此本文先将对目前比较经典的三种运动目标检测算法进行深入分析,通过对运动目标检测中这三种算法的比较,最终确立一种适用性比较强的基于混合高斯背景模型的背景差方法。然后针对前景检测中存在的阴影,研究在混合高斯背景模型之上的阴影检测算法。具体地讲,本文的主要研究内容包括以下几个方面:(1) 运动目标检测算法的研究在深入分析现有的检测算法基础上,提出一种改进的混合高斯背景模型的目标检测算法,能较好地解决场景中的光线、天气等环境的变化,以及存在动态背景的情况。(2) 阴影检测与去除算法的研究针对前景检测中的阴影,在理解阴影产生机理以及分析了现有阴影检测算法的基础上,提出一种基于RGB颜色空间的阴影检测
21、算法。本文各章内容安排如下:第一章绪论,对当前视频监控系统的发展进行总结,然后详细分析了智能视频监控系统中的关键技术,最后介绍了本文的研究内容及论文组织。第二章基础理论,介绍了与本课题相关的颜色模型、数学形态学算子等基础知识。第三章运动目标的检测,简单地对目前运动目标检测的集中经典算法进行分析,在对几种方法进行比对的基础上,确定一种较好的运动目标检测方法,即基于混合高斯背景模型的运动目标检测方法。第四章阴影的去除,首先对阴影产生的机理原因及影响进行了分析,然后对目标阴影检测算法进行了概括、总结和分类,在混合高斯背景模型基础上,针对前景中的阴影提出一种基于RGB颜色空间的阴影检测算法。最终通过M
22、ATLAB软件进行实验,证明了该算法的实用性。第五章总结与展望,全面总结了本文主要研究内容的成果,并指出了在现有系统的基础上对未来新技术的展望。第二章 基础理论2.1 引言在复杂的背景环境中,天气和光线等的变化、阴影、灯光及随机噪声等都会影响采集到的图像的特征。在目标检测和阴影去除的过程中,肯定会有一些像素点被误认为目标点或将目标点检测成阴影点。为了能够准确地提取运动目标,需要对提取出的目标进行一系列地处理。本章主要介绍本文在目标检测、阴影检测及去除等方面所涉及到的颜色空间,特别是RGB颜色空间,还有在图像处理技术中经常用到的数学形态学滤波等方面的一些基础知识。2.2 颜色模型颜色是人的视觉器
23、官对外来的光刺激而产生的主观感受。在光学和物理学中,可见光就是一种电磁波,对应于电磁频谱中狭窄的频率波段。可见光波段中的每一频率对于一种单独的颜色,而频率和波长的乘积等于光速,由于波长比频率在某种程度上容易处理,因此常用波长来指定光谱颜色,通常的红、橙、黄、绿、蓝和紫等颜色的波长在400nm到700nm之间。当一束光的各种波长的能量大致相等时,我们称其为白光;否则,称其为彩色光。若一束光中,只包含一种波长的能量,其它波长都为零时,称其为单色光。除了波长可以决定光的颜色以外,可见光还有一些其他的视觉特征,即亮度和纯度。亮度是指感受到的光的明度或颜色的强度,而纯度是指可见光的颜色的浓淡。因此颜色的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 正文 33
限制150内