2014年全国高考文科数学试题-解析几何(共15页).doc
《2014年全国高考文科数学试题-解析几何(共15页).doc》由会员分享,可在线阅读,更多相关《2014年全国高考文科数学试题-解析几何(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考文科数学真题分类汇编:解析几何H1直线的倾斜角与斜率、直线的方程62014福建卷 已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20 Bxy20 Cxy30 Dxy30202014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积212014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程
2、(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由图15H2两直线的位置关系与点到直线的距离182014江苏卷 如图16所示,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tanBCO. (1)求新桥BC的长 (2)当OM多长时,圆形保护区的面
3、积最大? 图16222014全国卷 已知抛物线C:y22px(p0)的焦点为F,直线y4与 y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程212014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明
4、理由图15H3圆的方程172014湖北卷 已知圆O:x2y21和点A(2,0),若定点B(b,0)(b2)和常数满足:对圆O上任意一点M,都有|MB|MA|,则(1)b_;(2)_202014辽宁卷 圆x2y24的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图15所示)图15(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:yx交于A,B两点,若PAB的面积为2,求C的标准方程202014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|
5、OP|OM|时,求l的方程及POM的面积H4直线与圆、圆与圆的位置关系52014浙江卷 已知圆x2y22x2ya0截直线xy20所得弦的长度为4,则实数a的值是()A2 B4 C6 D862014安徽卷 过点P(,1)的直线l与圆x2y21有公共点,则直线l的倾斜角的取值范围是()A. B. C. D.72014北京卷 已知圆C:(x3)2(y4)21和两点A(m,0),B(m,0)(m0)若圆C上存在点P,使得APB90,则m的最大值为()A7 B6 C5 D4112014福建卷 已知圆C:(xa)2(yb)21,平面区域:若圆心C,且圆C与x轴相切,则a2b2的最大值为()A5 B29 C
6、37 D49212014福建卷 已知曲线上的点到点F(0,1)的距离比它到直线y3的距离小2.(1)求曲线的方程(2)曲线在点P处的切线l与x轴交于点A,直线y3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论62014湖南卷 若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21 B19 C9 D1192014江苏卷 在平面直角坐标系xOy中,直线x2y30被圆(x2)2(y1)24截得的弦长为_16、2014全国卷 直线l1和l2是圆x2y22的两条切
7、线若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_122014新课标全国卷 设点M(x0,1),若在圆O:x2y21上存在点N,使得OMN45,则x0的取值范围是()A. 1,1 B. C. , D. 202014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积142014山东卷 圆心在直线x2y0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为_142014重庆卷 已知直线xya0与圆心为C的圆x2y22
8、x4y40相交于A,B两点,且ACBC,则实数a的值为_92014四川卷 设mR,过定点A的动直线xmy0和过定点B的动直线mxym30交于点P(x,y),则|PA|PB|的取值范围是()A,2 B,2 C,4 D2,4 212014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由图15H5椭圆及其几何性质202014安徽卷 设函数f(x
9、)1(1a)xx2x3,其中a0.(1)讨论f(x)在其定义域上的单调性;(2)当x0,1时,求f(x)取得最大值和最小值时的x的值192014北京卷 已知椭圆C:x22y24.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值202014广东卷 已知椭圆C:1(ab0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程202014湖南卷 如图15所示,O为坐标原点,双曲线C1:1(a10,b10)和椭圆C2:1(a2b20)均过点
10、P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形(1)求C1,C2的方程(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且|AB| ?证明你的结论. 图15172014江苏卷 如图15所示,在平面直角坐标系xOy中,F1,F2分别是椭圆1(ab0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为,且BF2,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值图15142014江西卷 设椭圆C:1(ab0)的左右焦点分别为F1,F2,过F2作x轴的垂线与C相交于
11、A,B两点,F1B与y轴相交于点D.若ADF1B,则椭圆C的离心率等于_202014辽宁卷 圆x2y24的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图15所示)图15(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:yx交于A,B两点,若PAB的面积为2,求C的标准方程92014全国卷 已知椭圆C:1(ab0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点若AF1B的周长为4 ,则C的方程为()A.1 B.y21 C.1 D.1202014新课标全国卷 设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF
12、2与x轴垂直直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.212014山东卷 在平面直角坐标系xOy中,椭圆C:1(ab0)的离心率为,直线yx被椭圆C截得的线段长为.(1)求椭圆C的方程(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点)点D在椭圆C上,且ADAB,直线BD与x轴、y轴分别交于M,N两点(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数使得k1k2,并求出的值;(ii)求OMN面积的最大值202014陕西卷 已知椭圆1(ab0)经过点(0,),离心率为,左、右
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 全国 高考 文科 数学试题 解析几何 15
限制150内