2010年北京市高考数学试卷(文科)答案与解析(共13页).doc
《2010年北京市高考数学试卷(文科)答案与解析(共13页).doc》由会员分享,可在线阅读,更多相关《2010年北京市高考数学试卷(文科)答案与解析(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2010年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1(5分)(2010北京)(北京卷理1)集合P=xZ|0x3,M=xZ|x29,则PM=()A1,2B0,1,2Cx|0x3Dx|0x3【考点】交集及其运算菁优网版权所有【专题】集合【分析】由题意集合P=xZ|0x3,M=xZ|x29,分别解出集合P,M,从而求出PM【解答】解:集合P=xZ|0x3,P=0,1,2,M=xZ|x29,M=2,1,0,1,2,PM=0,1,2,故选B【点评】此题考查简单的集合的运算,集合在高考的考查是以基础题为主,题目比较容易,复习中我们
2、应从基础出发2(5分)(2010北京)在复平面内,复数6+5i,2+3i对应的点分别为A,B若C为线段AB的中点,则点C对应的复数是()A4+8iB8+2iC2+4iD4+i【考点】向量的线性运算性质及几何意义菁优网版权所有【专题】平面向量及应用【分析】根据两个复数对应的点的坐标分别为A(6,5),B(2,3),确定中点坐标为C(2,4)得到答案【解答】解:两个复数对应的点的坐标分别为A(6,5),B(2,3),则其中点的坐标为C(2,4),故其对应的复数为2+4i故选C【点评】本题考查复平面的基本知识及中点坐标公式求解此类问题要能够灵活准确的对复平面内的点的坐标与复数进行相互转化3(5分)(
3、2010北京)从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ba的概率是()ABCD【考点】等可能事件的概率菁优网版权所有【专题】概率与统计【分析】由题意知本题是一个古典概型,试验包含的所有事件根据分步计数原理知共有53种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果【解答】解:由题意知本题是一个古典概型,试验包含的所有事件根据分步计数原理知共有53种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,由古典概型公式得到P=,故选D【点评】本题考查离散型随机变量的概率问题,先要判断该概率模型是不
4、是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数4(5分)(2010北京)若,是非零向量,且,|,则函数f(x)=(x+)(x)是()A一次函数且是奇函数B一次函数但不是奇函数C二次函数且是偶函数D二次函数但不是偶函数【考点】平面向量数量积的运算菁优网版权所有【专题】平面向量及应用【分析】f(x)=xx,因为|,所以f(x)=()x,所以函数f(x)是一次函数且是奇函数【解答】解:,=0f(x)=(x+)(xb)=xx,|,所以f(x)=()x所以函数f(x)是一次函数且是奇函数故选A【点评】本题主要考查平面向量的数量积运算和函数的奇偶性求解中要明确两向量互相垂直等价于
5、二者点乘等于05(5分)(2010北京)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()ABCD【考点】简单空间图形的三视图菁优网版权所有【专题】立体几何【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项故选:C【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义6(5分)(2010北京)给定函数,y=|x1|,y=2x+1,其中在区间
6、(0,1)上单调递减的函数序号是()ABCD【考点】函数单调性的判断与证明菁优网版权所有【专题】函数的性质及应用【分析】本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;为增函数,为定义域上的减函数,y=|x1|有两个单调区间,一增区间一个减区间,y=2x+1为增函数【解答】解:是幂函数,其在(0,+)上即第一象限内为增函数,故此项不符合要求;中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+)内为减函数,故此项符合要求;中的函数图象是由函数y=x1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知
7、该项符合要求;中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意故选B【点评】本题考查了函数的单调性,要注意每类函数中决定单调性的元素所满足的条件7(5分)(2010北京)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A2sin2cos+2Bsincos+3C3sincos+1D2sincos+1【考点】解三角形菁优网版权所有【专题】解三角形【分析】根据正弦定理可先求出4个三角形的面积,再由三角面积公式可求出正方形的边长进而得到面积,最后得到答案【解答】解:由正弦定理可得4个等腰三角形的面积和为:41
8、1sin=2sin由余弦定理可得正方形边长为:故正方形面积为:22cos所以所求八边形的面积为:2sin2cos+2故选A【点评】本题考查了三角面积公式的应用和余弦定理的应用正、余弦定理是考查解三角形的重点,是必考内容8(5分)(2010北京)如图,正方体ABCDA1B1C1D1的棱长为2,动点E、F在棱A1B1上点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥PEFQ的体积()A与x,y都有关B与x,y都无关C与x有关,与y无关D与y有关,与x无关【考点】棱柱、棱锥、棱台的体积菁优网版权所有【专题】立体几何【分析】通过观察,发现点P到平面EFQ的
9、距离是P到平面CDA1B1的距离,此距离只与x有关,面积EFQ为定值,推出结果【解答】解:三棱锥PEFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D的距离,此距离只与x有关,因为EF=1,点Q到EF 的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关故选:C【点评】本题考查空间几何体的结构特征和棱锥的体积问题,同时考查学生分析问题的能力以及空间想象能力二、填空题(共6小题,每小题5分,满分30分)9(5分)(2010北京)已
10、知函数y=,如图表示的是给定x的值,求其对应的函数值y的程序框图,处应填写x2;处应填写y=log2x【考点】设计程序框图解决实际问题菁优网版权所有【专题】算法和程序框图【分析】由题目可知:该程序的作用是计算分段函数y=的值,由于分段函数的分类标准是x是否大于2,而满足条件时执行的语句为y=2x,易得条件语句中的条件,及不满足条件时中的语句【解答】解:由题目可知:该程序的作用是计算分段函数y=的值,由于分段函数的分类标准是x是否大于2,而满足条件时执行的语句为y=2x,易得条件语句中的条件为x2不满足条件时中的语句为y=log2x故答案为:x2,y=log2x【点评】要求条件结构对应的函数解析
11、式,要分如下几个步骤:分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;根据判断框中的条件,设置分类标准;根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;对前面的分类进行总结,写出分段函数的解析式10(5分)(2010北京)在ABC中,若b=1,c=,C=,则a=1【考点】三角形中的几何计算菁优网版权所有【专题】解三角形【分析】先根据b,c,c,由正弦定理可得sinB,进而求得B,再根据正弦定理求得a【解答】解:在ABC中由正弦定理得,sinB=,bc,故B=,则A=由正弦定理得a=1故答案为:1【点评】本题考查了应用正弦定理求解三角形问题属基础题11(5分)(
12、2010北京)若点p(m,3)到直线4x3y+1=0的距离为4,且点p在不等式2x+y3表示的平面区域内,则m=3【考点】二元一次不等式(组)与平面区域菁优网版权所有【专题】不等式的解法及应用【分析】由点M到直线4x3y+1=0的距离等于4求得m的值,代入不等式2x+y3验证后得答案【解答】解:点M(m,3)到直线4x3y+1=0的距离为4,解得:m=7或m=3当m=7时,27+33不成立;当m=3时,2(3)+33成立综上:m=3故答案为:3【点评】本题考查了点到直线的距离公式,考查了二元一次不等式表示的平面区域,是基础题12(5分)(2010北京)从某小学随机抽取100名同学,将他们身高(
13、单位:厘米)数据绘制成频率分布直方图(如图)由图中数据可知a=0.03若要从身高在120,130,130,140,140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在140,150内的学生中选取的人数应为3【考点】频率分布直方图菁优网版权所有【专题】概率与统计【分析】欲求a,可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在140,150内的学生人数,再根据分层抽样的特点,代入其公式求解【解答】解:直方图中各个矩形的面积之和为1,10(0.005+0.035+a+0.02+0.01)=1
14、,解得a=0.03由直方图可知三个区域内的学生总数为10010(0.03+0.02+0.01)=60人其中身高在140,150内的学生人数为10人,所以身高在140,150范围内抽取的学生人数为10=3人故答案为:0.03,3【点评】本题考查频率分布直方图的相关知识直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的,都等于13(5分)(2010北京)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为(4,0),(4,0);渐近线方程为y=x【考点】双曲线的简单性质;椭圆的简单性质菁优网版权所有【专题】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010 北京市 高考 数学试卷 文科 答案 解析 13
限制150内