曲线运动题型总结(共31页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《曲线运动题型总结(共31页).doc》由会员分享,可在线阅读,更多相关《曲线运动题型总结(共31页).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 专题五 曲线运动一、运动的合成和分解【题型总结】1速度的合成:(1)运动的合成和分解 (2)相对运动的规律 例:一人骑自行车向东行驶,当车速为4ms时,他感到风从正南方向吹来,当车速增加到7ms时。他感到风从东南方向(东偏南45)吹来,则风对地的速度大小为( )A. 7m/s B. 6ms C. 5ms D. 4 msV风对车V风对地V车对地V风对车解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。而风相对地的速度方向不变,由此可联立求解。解:=45V风对车=7 4=3 ms V风对地= ms答案:C2绳(杆)拉物类问题 绳(杆
2、)上各点在绳(杆)方向上的速度相等 合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动 例:如图所示,重物M沿竖直杆下滑,并通过绳带动小车m沿斜面升高问:当滑轮右侧的绳与竖直方向成角,且重物下滑的速率为v时,小车的速度为多少?解:方法一:虚拟重物M在t时间内从A移过h到达的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O点做圆周运动到B,位移为s1,然后将绳拉过s2到C若t很小趋近于0,那么0,则s10,又OAOB,OBA(180)90亦即s1近似s2,故应有:s2hcos因为cos,所以vvco
3、s方法二:重物M的速度v的方向是合运动的速度方向,这个v产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v运动,如图(2)所示,由图可知,vvcos (1) (2)练习1:一根绕过定滑轮的长绳吊起一重物B,如图所示,设汽车和重物的速度的大小分别为,则( )A、 B、 C、 D、重物B的速度逐渐增大解析:(微元法)设经过t,物体前进,绳子伸长:, ,. , 专心-专注-专业练习2:如图所示,一轻杆两端分别固定质量为mA和mB的两个小球A和B(可视为质点)。将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成角时,A球沿槽下滑的速度为VA,求此时B
4、球的速度VB?VBVB1VB2BAVAVA1VA2解:A球以VA的速度沿斜槽滑下时,可分解为:一个使杆压缩的分运动,设其速度为VA1;一个使杆绕B点转动的分运动,设其速度为VA2。而B球沿斜槽上滑的运动为合运动,设其速度为VB,可分解为:一个使杆伸长的分运动,设其速度为VB1,VB1=VA1;一个使杆摆动的分运动设其速度为VB2;由图可知: 3渡河问题(1)以时间为限制条件:时间最短:使船头垂直于河岸航行 (d为河宽) (为合速度与水流速度的夹角)普通情况: (为船头与河岸的夹角)(2)以位移为限制条件: (d为河宽) (为船头与河岸的夹角) 船的真实方向指的是船的航行方向;船的划行方向指的是
5、船头指向。例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,战士救人的地点A离岸边最近处O的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O点的距离为() 解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸方向的运动速度为v2,到达江岸所用时间t=;沿江岸方向的运动速度是水速v1在相同的时间内,被水冲下的距离,即为登陆点距离0点距离。 答案:C例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T1;若此船用
6、最短的位移过河,则需时间为T2,若船速大于水速,则船速与水速之比为( ) (A) (B)(C) (D)解析:设船速为 ,水速为 ,河宽为d ,则由题意可知 : 当此人用最短位移过河时,即合速度方向应垂直于河岸,如图所示,则 联立式可得: ,进一步得 答案:AMm【巩固练习】1、 一个劈形物体M,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个光滑小球m,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( )A、 沿斜面向下的直线 B、竖直向下的直线 C、无规则的曲线 D、抛物线解析:由于小球初速度为零,所以不可能做曲线运动;又因为小球水平方向不受力,水平方向运动状态不变,所以只能
7、向下运动。答案:C同类变式1下列说法中符合实际的是:()A足球沿直线从球门的右上角射入球门B篮球在空中划出一条规则的圆弧落入篮筐C台球桌上红色球沿弧线运动D羽毛球比赛时,打出的羽毛球在对方界内竖直下落。解析:足球在空中向前飞行时,只受重力作用,一定做曲线运动;抛出的篮球,所受重力的方向不可能总与篮球的速度方向垂直,所以不可能是规则的圆弧;滚动的台球所受合力是摩擦力,与运动方向相反,只能做减速直线运动;打出的羽毛球受到重力及较大的空气阻力作用,其中空气阻力总与运动方向相反,随着运动速率减小而减小,二力合力的大小及方向都在不断变化,所以打出的球较高时有可能竖直下落。答案:D同类变式2匀速上升的载人
8、气球中,有人水平向右抛出一物体,取竖直向上为y轴正方向,水平向右为x轴正方向,取抛出点为坐标原点,则地面上的人看到的物体运动轨迹是下图中的: A B C D 解析:物体具有竖直向上的初速度,在空中只受重力作用,所以做斜上抛运动(水平方向作匀速运动、竖直方向做竖直上抛运动。)答案:B2、如图所示为一空间探测器的示意图,P1 、P2 、P3 、P4是四个喷气发动机, P1 、P2的连线与空间一固定坐标系的x轴平行,P3 、P4的连线与y轴平行每台发动机开动时,都能向探测器提供推力,但不会使探测器转动开始时,探测器以恒定的速率vo向正x方向平动要使探测器改为向正x偏负y 60 的方向以原来的速率vo
9、平动,则可( ) A先开动P1 适当时间,再开动P4 适当时间 B. 先开动P3 适当时间,再开动P2 适当时间 C. 开动P4 适当时间 D. 先开动P3 适当时间,再开动P4 适当时间解析:火箭、喷气飞机等是由燃料的反作用力提供动力,所以 P1 、P2 、P3 、P4分别受到向左、上、右、下的作用力。使探测器改为向正x偏负y 60 的方向以原来的速率vo平动,所以水平方向上要减速、竖直方向上要加速。答案:A3、如图所示,A、B为两游泳运动员隔着水流湍急的河流站在两岸边,A在较下游的位置,且A的游泳成绩比B好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?(
10、)A. A、B均向对方游(即沿虚线方向)而不考虑水流作用B. B沿虚线向A游且A沿虚线偏向上游方向游C. A沿虚线向B游且B沿虚线偏向上游方向游D. 都应沿虚线偏向下游方向,且B比A更偏向下游解析:游泳运动员在河里游泳时同时参与两种运动,一是被水冲向下游,二是沿自己划行方向的划行运动。游泳的方向是人相对于水的方向。选水为参考系,A、B两运动员只有一种运动,由于两点之间直线最短,所以选A。答案:A二、平抛运动【题型总结】1斜面问题:分解速度:例:如图所示,以水平初速度抛出的物体,飞行一段时间后,垂直撞在倾角为的斜面上,求物体完成这段飞行的时间和位移。解: , 练习:如图所示,在倾角为370的斜面
11、底端的正上方H处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。解:小球水平位移为,竖直位移为由图可知,又,解之得:.分解位移:例:如图,在倾角为的斜面顶端A处以速度水平抛出一小球,落在斜面上的某一点B处,设空气阻力不计,求小球从A运动到B处所需的时间和位移。解:设小球从A处运动到B处所需的时间为t ,则水平位移 ,竖直位移 。 , 练习1:(求平抛物体的落点)如图,斜面上有a、b、c、d四个点,ab=bc=cd。从a点正上方的O点以速度v0水平抛出一个小球,它落在斜面上b点。若小球从O点以速度2v0水平抛出,不计空气阻力,则它落在斜面上的( ) Ab与c之间某一点Bc点Cc与
12、d之间某一点 Dd点解析:当水平速度变为2v0时,如果作过b点的直线be,小球将落在c的正下方的直线上一点,连接O点和e点的曲线,和斜面相交于bc间的一点,故A对。答案:A练习2:(证明某一夹角为定值)从倾角为的足够长的A点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,球落到斜面上前一瞬间的速度方向与斜面的夹角为,第二次初速度,球落在斜面上前一瞬间的速度方向与斜面间的夹角为,若,试比较的大小。解析: , 所以。即以不同初速度平抛的物体落在斜面上各点的速度是互相平行的。练习3:(求时间或位移之比)如图所示,AB为斜面,BC为水平面,从A点以水平初速度v向右抛出一小球,其落点与A
13、的水平距离为s1,从A点以水平初速度2v向右抛出一小球,其落点与A的水平距离为s2,不计空气阻力,可能为:A. 1:2 B. 1:3 C. 1:4 D. 1:5解析:若两物体都落在水平面上,则运动时间相等,有,A是可能的。若两物体都落在斜面上,由公式得,运动时间分别为,。水平位移,C是可能。若第一球落在斜面上,第二球落在水平面上(如图所示),不会小于1:4,但一定小于1:2。故1:3是可能的,1:5不可能。答案:ABC练习4:(斜面上的最值问题)在倾角为的斜面上以初速度v0平抛一物体,经多长时间物体离斜面最远,离斜面的最大距离是多少?解:方法一:如图所示,速度方向平行斜面时,离斜面最远由,则运
14、动时间为,此时横坐标为。又此时速度方向反向延长线交横轴于处: 。方法二:建立如图所示坐标系把运动看成是沿x方向初速度为,加速度为的匀加速运动和沿y方向的初速度为,加速度为的匀减速运动的合运动。最远处,所以,2类平抛运动:例:如图所示,光滑斜面长为 ,宽为 ,倾角为 ,一物体从斜面右上方P点水平射入,而从斜面左下方顶点Q离开斜面,求入射初速度。解:物体在光滑斜面上只受重力和斜面对物体的支持力,因此物体所受到的合力大小为F,方向沿斜面向下;根据牛顿第二定律,则物体沿斜面方向的加速度应为a加,又由于物体的初速度与a加垂直,所以物体的运动可分解为两个方向的运动,即水平方向是速度为v0的匀速直线运动,沿
15、斜面向下的是初速度为零的匀加速直线运动。在水平方向上有 b= v0 t,沿斜面向下的方向上有aa加t2。练习:如图所示,有一个很深的竖直井,井的横截面为一个圆,半径为,且井壁光滑,有一个小球从井口的一侧以水平速度抛出与井壁发生碰撞,撞后以原速率被反弹,求小球与井壁发生第次碰撞处的深度。解:由于小球与井壁相碰时,小球的速率不变,因此在水平方向上小球一直是匀速率运动,当小球与井壁相碰n次时,小球在水平方向上通过的路程: ,所以用的时间 ,由于小球在竖直方向上做的是自由落体运动,因此小球在竖直方向上的位移即小球与井壁发生第n次碰撞时的深度为3相对运动中的平抛运动:例:正沿平直轨道以速度v匀速行驶的车
16、厢内,前面高h的支架上放着一个小球,如图所示,若车厢突然改以加速度a ,做匀加速运动,小球落下,则小球在车厢底板上的落点到架子的水平距离为多少?解:方法一:小球水平运动,小车水平运动 方法二:, 同类变式若人在车厢上观察小球,则小球运动轨迹为 直线 (填“直线”或“曲线”)qO因为,所以运动轨迹为直线。练习:沿水平直路向右行驶的车内悬一小球,悬线与竖直线之间夹一大小恒定的角,如图所示,已知小球在水平底板上的投影为O点,小球距O点的距离为h.,若烧断悬线,则小球在底板上的落点P应在O点的_侧;P点与O点的距离为_。解:烧断悬线前,悬线与竖直方向的夹角,解析小球的受力可知小球所受合力 ,根据牛顿第
17、二定律知,车与球沿水平向右做匀加速运动,其加速度为 (题设隐含条件)烧断悬线后,小球将做平抛运动,设运动时间为t ,则有 对小球: 对小车:球对车的水平位移,负号表示落点应在O点的左侧,距离OP为htan 。【巩固练习】1、如图所示,房间里距地面H高的A点处有一盏白炽灯(可视为点光源),一小球以初速度从A点沿水平方向垂直于墙壁抛出,恰好落在墙角B处,那么,小球抛出后,它的影点在墙上的运动情况是( )A匀速运动 B匀加速运动 C变速运动 D无法判断解析:由相似三角形可知:由平抛规律可得:EP=gt2,AE=v0t,AF=v0。小球刚好落在墙角处,则有:s=FQ =EP=(v0 t由此可知:小球影
18、子以速度v=沿墙向下做匀速运动.答案:A同类变式如图所示,从地面上方D点沿相同方向水平抛出的三个小球分别击中对面墙上的A、B、C三点,图中0点与D点在同一水平线上,知O、A、B、C四点在同一竖直线上,且OA=AB=BC,三球的水平速度之比为:=_。解析:由和设OA=AB=BC=h ,则,;整理得:=; : =答案: ; 2、把物体甲从高H处以速度平抛,同时把物体乙从距物体甲水平方向距离为s处由地面以速度竖直上抛,不计空气阻力,两个物体在空中某处相遇,下列叙述中正确的是( )A、 从抛出到相遇所用的时间是B、 如果相遇发生在乙上升的过程中,则C、 如果相遇发生在乙下降的过程中,则D、 若相遇点离
19、地面的高度为 ,则解析:对A选项:; 对B、C选项: 在上升过程中相遇:在下降过程中相遇: 对D选项:答案:ABD同类变式2如图所示,P、Q两点在同一竖直平面内,且P点比Q点高,从P、Q两点同时相向水平抛出两个物体,不计空气阻力,则( )A. 一定会在空中某点相遇 B. 根本不可能在空中相遇C. 有可能在空中相遇D. 无法确定能否在空中相遇解析:P、Q在竖直方向上都是做自由落体运动,在相等时间内通过的竖直位移相等。由于P点比Q点高,所以P点总在Q点上方。答案:B同类变式2如图所示,质量均为m的 A、B两个弹性小球,用长为2l的不可伸长的轻绳连接。现把A、B两球置于距地面高H处(H足够大),间距
20、为l。当A球自由下落的同时,B球以速度v0指向A球水平抛出。求:(1)两球从开始运动到相碰,A球下落的高度。 (2)A、B两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量。 (3)轻绳拉直过程中,B球受到绳子拉力的冲量大小。 解:(1)设A球下落的高度为h 联立解得 (2)由水平方向动量守恒得 由机械能守恒得 式中 , 联立解得 , (3)由水平方向动量守恒得 18m3m, 3、如图所示,排球场总长为18m,设球网高度为2m,运动员站在网前3m处正对球网跳起将球水平击出。(1)若击球高度为2.5m,为使球既不触网又不出界,求水平击球的速度范围;(2)当击球点的高度为何值时,无论水平击球的速
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲线运动 题型 总结 31
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内