立体几何高考经典大题理科(共7页).doc
《立体几何高考经典大题理科(共7页).doc》由会员分享,可在线阅读,更多相关《立体几何高考经典大题理科(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点。 ()求证:ACSD;w.w.w.k.s.5.u.c.o.m ()若SD平面PAC,求二面角P-AC-D的大小()在()的条件下,侧棱SC上是否存在一点E,w.w.使得BE平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。zxPCBADy2如图,四棱锥P-ABCD中,底面ABCD为平行四边形,DAB=60,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。3如图,直三棱柱中,是棱的中点,(1)证明:(2)求二面角的大
2、小。1解法一:()连BD,设AC交BD于O,由题意。在正方形ABCD中,所以,得. ()设正方形边长,则。又,所以, 连,由()知,所以, w.w.w.k.s.5.u.c.o.m 且,所以是二面角的平面角。由,知,所以,即二面角的大小为。 ()在棱SC上存在一点E,使由()可得,故可在上取一点,使,过作的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.解法二:();连,设交于于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。 设底面边长为,则高。 于是 w.w.w.k.s.5 w.w.w.k.s.5.u.c.o.m 故 从而 ()由题设知,平面的一个法向量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 高考 经典 理科
限制150内