数据中心应用风冷型系统和冷冻水型系统之比较与分析.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数据中心应用风冷型系统和冷冻水型系统之比较与分析.docx》由会员分享,可在线阅读,更多相关《数据中心应用风冷型系统和冷冻水型系统之比较与分析.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数据中心应用风冷型系统和冷冻水型系统之比较与分析 一、本课题研究范围 本研究的范围是5000平米(地板面积)中所采用的机房专用空调系统部分。总IT设备负荷按为4500千瓦规划。 二、具体分析方法 考虑到该问题的复杂性,针对本项目的负荷规模,综合分析比较当前常用的两种机房专用空调系统即:风冷型机房专用空调系统和冷冻水型机房专用空调系统。我们从以下十个方面分析比较两种系统:1、可靠性;2、漏水隐患;3、能效比;4、可扩容性;5、分期建设与灵活性;6、对建筑的外部条件要求;7、投资;8、维护管理;9、系统的适应性;10、对设计的要求。 2.1风冷冷却方式的综合分析 典型风冷
2、冷却系统专用空调系统图如下:该系统由空调室外机组和空调室内机组两部分组成。 图一:典型风冷型机房专用空调系统图 对典型风冷型机房专用空调系统的十个方面分析如下: 2.1.1可靠性:风冷冷却方式的主要组成就是风冷室内机、风冷室外冷凝器,其路由为独立的冷媒管路连接,从物理连接的角度看(不考虑主备机切换、能效管理等逻辑控制与连接),系统完全独立,任意机组路由的故障不会影响其它机组,因此从系统的角度看,没有任何影响系统运行的单点故障。 2.1.2漏水隐患:风冷冷却方式因仅有加湿水管部分进入机房,相对漏水隐患较小。降低该系统漏水隐患的主要措施有:(1)如果排水管路泄漏,机组在探测到漏水后,自动关闭进水管
3、路,排除进一步漏水的可能;(2)如果进水管路泄漏,监控系统将立即告警。即使不考虑设计有自动关闭进水阀的装置,在值班人员抵达现场关闭进水阀之前,因单个机房进水量小(每小时供水量小于100升),不会对机房造成大的危害。如果设计有合适高度的拦水坝和排水孔,漏水造成对机房的隐患将彻底排除。 2.1.3能效比:风冷冷却方式单机系统的能效比较高,从冷却的角度看,主要能耗产生于压缩机、室内风机、风冷室外冷凝器。此方式能效比稳定,目前业界常用的风冷方式能效比约为2.7-3.1。如考虑利用自然冷源,可进一步提高能效比,例如制冷剂泵循环模式,冬季时可停止压缩机运行,通过制冷剂泵实现制冷循环,能效比将高达6.5以上
4、,按此计算,北京地区全年能效比(在正在修订的GB19413计算机和数据处理用单元式空气调节机中规定:全年能效比(AEER)annualenergyefficiencyratio:机房空调进行全年制冷时从室内除去的热量总和与消耗的电量总和之比)将高达3.5以上。 2.1.4可扩容性:风冷冷却方式由于系统独立,路由独立,规划简单,因此几乎不受限制,只需要提前预留室内外机组的位置以及路由管井等,不需要提前对整体管路进行设计,扩容非常简单只要留出适当的扩容空间即可。 2.1.5分期建设与灵活性:风冷冷却方式非常灵活,可以非常简便地分期建设。以此项目为例,对于多个小面积机房而言,完全可以以场地为单位,进
5、行分期建设,在每一步建设中,再充分考虑风冷室外冷凝器场地以及冷媒路由的前提下,不需要额外考虑其它分区的建设。 2.1.6对建筑外部条件的要求:风冷冷却方式的问题存在与风冷室外冷凝器占地要求较大,但如果提前规划有面积足够大的屋顶放置冷凝器,或在机房每层建设有冷凝器平台,这个问题将得以解决。依照本项目规模,如采用常规产品室外冷凝器的占用面积约为600平米。 2.1.7投资:对于本项目的负荷需求而言,如采用风冷冷却方式系统大约需要45-55套100千瓦机组总投资约为1500万,包括风冷空调室内外机以及安装费用,并可以分期投资,分期实施。 2.1.8维护管理:风冷冷却方式系统简单,无共用管路等,故障类
6、型明确,机组之间互无影响,维护要求低,对维护人员的要求也较低,仅需要少量的维护人员。 2.1.9系统适应性:风冷冷却方式对室内外及距离有限制,系统管路长度有一定限制,一般标称要求室内外机单程总长度在60米之内,冷量损失可忽略不计,目前国内最长案例为单程120米。另外,对室内外机高度差也有要求,一般标称要求风冷室外冷凝器可高出室内机20米之内,冷量损失可忽略不计,目前国内最长案例为35米;一般标称要求风冷室外冷凝器可低于室内机9米之内,冷量损失可忽略不计,目前国内最长案例为15米。 2.1.10对设计的要求:因系统清晰、明确,属于成熟设计范畴,因此设计相对简单,安全。综合说明:风冷冷却方式简单,
7、可靠,在能效、可扩容性等方面具有不可比拟的优势,因此最为常用。国内类似的中大型机房采用风冷系统的案例非常多。2.2、冷冻水冷却方式的综合分析典型的冷冻水系统机房专用空调的系统结构如下: 图二:冷冻水系统机房专用空调系统图 该系统由:室内冷冻水机房空调、冷冻水供回水管路、冷冻水水泵、冷冻水机组、冷却水塔、冷却水供回水管路、冷却水泵等部分组成。对典型的冷冻水机房专用空调系统的十个方面分析如下: 2.2.1可靠性:如果将冷冻主机部分设计为单机系统,或管路系统设计为单管路,将存在严重的单点瓶颈,一旦冷冻主机故障或管路故障,整个系统将瘫痪,因此如果该系统采用冷冻水冷却方式,必须采用主机备份和双管路系统来
8、解决,要求冷冻主机系统、冷却水系统、泵系统采用N+X备份,确保任意系统发生故障,整个系统正常提供冷冻水。如项目采用冷冻水主设备冗余、管路系统采用双环管网等设计,在任意管路或主器件出现问题,仍能不影响绝大部分的机组运行。 2.2.2漏水隐患:冷冻水冷却方式隐患较大,问题在大型冷冻水管进入机房,就存在水浸机房的风险,一旦进入机房的主管路发生问题,由于水量大,很难通过防水坝以及排水孔排除漏水。这就需要设计有漏水报警与联动系统(例如在发生漏水时,立即判断并自动关闭相应段的水阀),并需要在系统运行的每个月进行检查,避免出现即使漏水告警系统发出信号,但电动水阀也无法关闭的问题。若主管路发生漏水将带来灾难性
9、影响。 2.2.3能效比:冷冻水冷却方式中,大型冷冻主机的压缩机能效比高于机房空调压缩机,但是整个冷冻水的耗电包括压缩机、冷冻水泵、冷却水系统、末端冷冻水机组的总耗电,这样,针对整个空调系统的能效比约在2.53.5。而综合效率取决于冷冻主机的效率,总冷量为4500KW的系统冷冻水主机能效比取国标二级能效5.6,按5000平方米机房计算,并考虑冷冻主机水泵冷却塔能无极调节变频时,总能效比显示出优势。当然,可以设计在冬季利用自然冷源,进一步提高全年能效比。 例如应用风冷直接蒸发式冷却塔,优势是冬季节能明显,缺点是价格较高,夏季使用效率较低。另外,如果设计为相对高的进出水温度,例如:不是设计为传统的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据中心 应用 风冷 系统 冷冻 比较 分析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内