《过程控制系统》实验报告(最新版)(共32页).docx
《《过程控制系统》实验报告(最新版)(共32页).docx》由会员分享,可在线阅读,更多相关《《过程控制系统》实验报告(最新版)(共32页).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实验一、单容水箱特性的测试一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只三、实验原理图2-1单容水箱特性测试结构图 由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)动态时,则有 Q1-Q2=dv/dt (
2、2)式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为dV=Adh ,即dV/dt=Adh/dt (3)A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4)基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt即ARsdh/dt+h=KQ1或写作 H(s)K/Q1(s)=K/(TS+1) (5)式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。式(5)就是单容水箱的传递函数。对上式取拉氏反变换得(6)当t时,h()=KR0 ,因而有K=h()/R0=输出稳态值/阶跃输入当 t=T 时,则有h(T)=KR
3、0(1-e-1)=0.632KR0=0.632h() 式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响 应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间,BC为对象的时间常数T,所得的传递函数为:四、实验内容与步骤1 按图2-1接
4、好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。2接通总电源和相关的仪表电源,并启动磁力驱动泵。3把调节器设置于手动操作位置,通过调节器增/减的操作改变其输出量的大小,使水箱的液位处于某一平衡位置。4手动操作调节器,使其输出有一个正(或负)阶跃增量的变化(此增 量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一定的调节时间后,水箱的液位进入新的平衡状态,如图 2-4 所示。5 启动计算机记下水箱液位的历史曲线和阶跃响应曲线。正向输入曲线 负向输入曲线6实验数据计算(1)、正向输入:T=t12-t1= 1:53:55 - 1:52:18=1:37=97
5、(s)h()= h2()- h1()= 74.71mm-26.81mm=49.7mmR0=Q2-Q1=459.8L/h-397.9L/h=61.9L/hK=h()/R0=49.7/61.9=0.8029H(S)=K-=-(2)、负向输入:T=t23-t2= 1:57:24 - 1:56:06=1:18=78(s)h()= h2()- h3()= 74.71mm-37.44mm =37.27mmR0=Q2-Q1=459.8L/h-388.0L/h=71.8L/hK=h()/R0=37.27/71.8=0.5191H(S)=K-=-7实验曲线所得的结果填入下表。参数值测量值放大系数K周期T正阶跃输
6、入0.802997(s)负阶跃输入0.519178(s)平均值0.661087.5五、思考题1.在实验进行过程中,为什么不能任意改变出水口阀开度的大小?答:因为在实验过程中,任意改变出水口阀开度会影响出水流量的大小。在入水量不变的情况下,这样会使实验记录的数据和图形与实际相差较远。2.用响应曲线法确定对象的数学模型时,其精度与哪些因素有关?答:因为系统用到了仪表,因此与仪表的精度有关,同时与出水阀开度的大小有关。并和放大系数K、时间常数T以及纯滞后时间有关。另外,也会受实验室电压的波动与测试软件的影响。3.如果采用中水箱做实验,其响应曲线与上水箱的曲线有什么异同?试分析差异原因。答:若采用中水
7、箱做实验,它的响应曲线要比上水箱变化的慢。原因:因为中水箱的回路比上水箱的回路要长,上升相同的液位高度,中水箱要更长的时间。实验三、上水箱液位PID整定实验一、实验目的1.根据实验数据和曲线,分析系统在阶跃扰动作用下的动、静态性能。2.比较不同PID参数对系统的性能产生的影响。3.分析P、PI、PD、PID四种控制规律对本实验系统的作用。二、实验设备1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只三、实验原理图3-2-1 上水箱单容液位定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-2-1所示。被控量为上水箱(也可采用中水箱或下水箱)
8、的液位高度,实验要求它的液位稳定在给定值。将压力传感器LT1检测到的上水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制气动调节阀的开度,以达到控水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。四、实验内容与步骤1.先将储水箱中贮足水量,然后将阀门F1-1、F1-6、F1-10、F1-11全开,将上水箱出水阀门F1-9开至适当开度(50%左右),其余阀门均关闭。2.接通控制柜总电源,打开漏电保护器及各空气开关,接通空压机电源,并将三相磁力泵、三相电加热管、控制站的各旋钮开关打到开的位置。控制柜无需接线。3.在上位机监控界面中点击
9、“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过设定值或输出值旁边相应的滚动条或输出输入框来实现。4.启动磁力驱动泵,磁力驱动泵上电打水,适当增加/减少输出量,使上水箱的液位平衡于设定值。5.按本章第一节中的经验法或动态特性参数法整定PI调节器的参数,并按整定后的PI参数进行调节器参数设置。6.分别适量改变调节器的P参数,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。7.分别用PI、PD、PID三种控制规律重复步骤36,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。8.水箱液位的历史曲线和阶跃响应曲线。(1)、P调节:K=5K
10、=7 (2)、PIK=7 I=20000K=5 I=2000 (3)、PDK=5 D=10000K=5 D=5000 (4)、PIDK=5 I=20000 D=50009.计算(1)、P调节K=5时:上升时间为:tr=t2-t1=2:50:22-2:50:04=18(s)稳态误差=60mm- h()=60mm-53.35mm=6.65mmK=7时:上升时间为:tr=t2-t1=2:50:41-2:50:21=20(s)稳态误差=60mm- h()=60mm-55.41mm=4.59mm(2)、PI调节K=7,I=20000 时:上升时间:tr=t1-t0=3:08:04-3:07:35=29(
11、s)峰值时间:tp=t2-t0=3:08:09-3:07:35= 34(s)调节时间:ts=t3-t0=3:08:36-3:07:35=61(s)超调量=hmax- h()/ h()-h(0)*100%=6.8%稳态误差= h()-60mm=0.69mm(可以忽略不计)K=5 ,I=20000时 :上升时间:tr =3:22:58-3:22:31=27(s)峰值时间:tp= 3:23:06-3:22:31= 35(s)调节时间:ts= 3:23:30-3:22:31=59(s)超调量=hmax- h()/ h()-h(0)*100%=10.9%稳态误差= h()-60mm=0.11mm(可以忽
12、略不计)(3)、PD调节K=5,D=10000时:上升时间为t=t2-t1=4:25:57-4:25:36=21(s)稳态误差=60mm- h()=60mm-52.98mm=7.02mmK=5,D=5000时:上升时间为t=t2-t1=4:30:51-4:30:31=20(s)稳态误差=60mm- h()=60mm-52.81mm=7.19mm(4)、PIDK=5 ,I=20000 ,D=5000时:上升时间:tr =4:35:50-4:35:19=31(s)峰值时间:tp= 4:35:57-4:35:19= 38(s)调节时间:ts= 4:36:02-4:35:19=43(s)超调量=hma
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 过程控制系统 过程 控制系统 实验 报告 最新版 32
限制150内