用分立元件设计制作功率放大器(共19页).doc
《用分立元件设计制作功率放大器(共19页).doc》由会员分享,可在线阅读,更多相关《用分立元件设计制作功率放大器(共19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上用分立元件设计制作功率放大器 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图所示。其中: C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22,它对20Hz信号的阻抗为362;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使B
2、G1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3C21/10、(R3R4)Ic1E/21.2,因R4是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA进行计算,R3与R4之和为7.2k,实际将R3给为820、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了
3、补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的UAB减小,一般取为47;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P200P。 BG1起电压放大作用,在该电路中被称为激励级,要求BuceoE、IceoIc1/4005A、100200,所以应选用小功率低噪声三极管。BG2和BG3是互补电流放大极,分别与BG4、BG5构成复合管对输出电流进行放大,要求BuceoE、IceoIc2/10030A、100200。
4、在BG4、BG5使用普通大功率三级管而不是内部已经做成复合式大功率三级管的情况下,BG2与BG3需要提供给后级大功率三级管超过100mA的峰值驱动电流,因此应使用中功率三级管。BG4和BG5是负责放大输出电流的大功率管,静态工作电流可取在10mA30mA,要求BuceoE、IceoIc4/1000.1mA、50100。BG4和BG5的最大极限电流Imax应该比输出电流最大幅值大1倍,方能保证输出电流最大幅值时10。 R6和R7分别是BG4和BG5静态工作点调整分流电阻,动态工作时的分流作用可以忽略不计。在Ube4和Ube5都等于0.6V标准参数时,由互补电流放大级的静态工作电流取在3mA4mA
5、,可计算出R6和R7应取为220。实际上,大功率三级管Ube可能相差较大,BG4和BG5的Ube需通过实测进行配对使用,借助自举电路工作的半边复合管的总电流放大率应应比不借助自举电路工作的另半边复合管要小。 R8和R9分别是防止BG4和BG过流的限流电阻,一般取在0.20.5之间。将用200mm长、直径为0.08的漆包线两端分别焊接在1k以上电阻两端,把对折起来的漆包线绕在电阻上即可。相当于熔断保险管的作用,属于最简单的非智能式限流烧断保护方式。 C5和C6是信号输出电容,用一只小容量电容与大容量电容并联起来使用,可消除大容量电容内部具有的较大电感对高频率信号的阻碍。注意它实际上是起到中点浮动
6、电源作用,所以电容量不是按照对通拼带下端交流信号的阻抗应为多大来计算,而是按照输出功率需要消耗多少能量进行计算。在中点浮动电源电压随着输出电流进行波动而导致输出信号截波时,就会产生严重削波失真。根据电容储存的能量与电压平方成正比关系,中点浮动电源的输出电容,容量应是总电源上储能电容量的4倍。 C9和R10是交流负反馈网路,与R2、R1共同构成电压并联负反愧。R2与R1构成的直流负反愧可使总的电压放大倍率约等于R2除以1.2k(等于R1与BG1的发射结动态电阻并联),按照图设计参数约为100倍,加入C9和R10的交流负反馈网路后,总的电压放大倍率约等于R2与R10的并联电阻除以1.2k,约为18
7、倍。实践证明,采用这种方式工作的电压并联负反愧表现效果很不良好。 二、对功率放大器基本电路的改进 在图所示的互补对称式OTL功率放大器基本电路中,信号输入激励级的内阻只有1k,需要做阻抗变换才能与大部份中、高阻信号源匹配。将信号输入激励级直接改成复合管是最简单的方式,复合管的接法有多种具体电路,最佳方案是采用图所示的接法。新增加的前置级实际上相当于简单的电压控制电流型运算放大器,BG0的基极与发射极相当于运算放大器的正输入端和负输入端,正输入端的动态电阻已经提高到10K以上。同时,从功率放大器输出端接到负输入端发射极负反馈电阻R10和取样电阻R11之比决定着总的电压放大倍率。 电路调试要点也是
8、先将R5调节成短路0电阻状况使BG2BG5处于截止状态,用两只1K/2W电阻分别从总电源两端接到输出端获得中点电压。用一只200K电位器代替R1或R2接在电路板上,用导线将C1输入电容信号输入端与地短路。接通电源,测量BG1的集电极到发射极的电压降Uce,调节200K电位器使Uce等于E/2-0.6;在总电源电压为32V时,BG1的静态Uce应等于15.4V0.1V。然后测量200K电位器实际所处的电阻值,换成同阻值固定电阻替换电位器,再测量BG1静态Uce应该在15.4V0.2V之内。确定好BG1的静态Uce后,再从小到大调节R5使BG4和BG5的静态工作电流为15mA。为保险起见,可将R8
9、与R9换接成100/2W电阻,先测量R8与R9上的静态电压降应为1.5V。断开电源,测量R5可调电阻实际所处的电阻值,将R5换成相同阻值的固定电阻,拆掉先前从输出端分别连接到电源两端的1k/2W分压电阻。再接通电源,测量R8与R9上的静态电压降应保持在1.2V1.8V之间。测量输出中点电平也应为16V0.5V之间。把C1输入电容信号输入端与地断开悬空,测量R8与R9的电压降,用起子碰到C1输入端时R8与R9上的电压降明显变大。然后把R8与R9换成0.3电阻,接上喇叭试听。接通电源时因C0充电,输出端中点电压需要从零缓慢上升,因而只产生轻微冲击声。2秒钟后,用手碰C1输入端时喇叭将发出“呜”的交
10、流声。将C1输入端与地(电源负端)短路,喇叭应不发出声音,实际会发出轻微背景白噪声或很小声的交流哼声。图所示的互补对称式OTL功率放大器改进电路,有一个明显的缺点是信号输入端直流电平比输出端中点电压要低2V3V,在大众还没有运放IC使用和三极管元件价格高的20世纪80年代初,它已经是很良好的可使用单电源的功率放大器实用电路。20世纪80年代中期,运放IC开始推出,人们开始采用运放IC来担任前置极和激励极。典型电路如图所示,因运放IC不需调整静态工作点,只要调节R5使BG2BG5的静态工作电流10mA20mA即可。注意,虽然运放IC不需调整静态工作点,但在BG2BG5处于截止状态时,由R8、R9
11、和BG3、BG5发射结正向导通将运放IC负输入端置为高电平,运放IC输出低电平,于是通过BG3发射结把运放IC负输入端置为低电平,运放IC输出端翻转成高电平,结果处于输出不定的低频率振荡状态,不能提供稳定的参考中点电平。在这种状况下调整BG2BG5的静态工作电流,运放IC输出端为高电平时调节R5无效;而运放IC输出端为0电平时BG5不能导通,调节R5只能使BG2、BG3、BG4进入工作区,BG2实际只起到二极管的作用,经BG4和BG2的电流直全部灌入运放IC输出端,结果使BG2和运放IC因过流而损坏!(我曾经把当时手头所拥有的几只国产运放IC和十几只中功率三级管全部损坏,也未能将静态工作点调整
12、出来。)必须先用导线将运放IC的负输入端与输出端连通,暂不接上负反馈电阻R6,让运放IC以跟随器方式输出稳定的参考中点电平,在此状态下调节R5使BG2BG5的静态工作电流为15mA,将R5换成相同阻值的固定电阻后确认BG2BG5的静态工作电流在10mA20mA之间,再将运放IC的负输入端与输出端端开,把反馈电阻R6接入电路中。 使用运放IC担任前置极和激励极后,最好将BG2BG5的静态工作电流偏置方式改成由三极管与分压电阻构成的稳压器,这样可以在电源电压发生较大变化下保持几乎相同的静态工作电流。图即是经过改进后的电路,BG1发射结门坎电压与BG2、BG3、BG4的门坎电压一同随温度变化,本身可
13、起到温度补偿作用。为了减少运放IC输出端的静态工作电流,在运放IC输出端赠加了到地端的分流电阻R10。有了该分流电阻后,调整BG2BG5的静态工作电流时可以先不接入运放IC,直接由其中的R7、R8和R10分压出近似的中点参考电平。先从0到大调节R5使BG2BG5的静态工作电流在10mA20mA之间,再接入运放IC,电路即能正常工作。另外,在运放IC输出端串联一只1k限流电阻R15,可保证运放IC输出端处于0电平时BG5也不会进入截止状态。 使用运放IC担任前置极和激励极,最大的优点是输出端直流电平与信号输入端直流电平严格一致,相差不大于0.05V。这样就可以制作出由两个OTL功率放大器构成的反
14、向输出的BTL功率放大器,而在输出端直流电平与信号输入端直流电平相差悬殊情况下,两个OTL功率放大器的正、反相输出端直流电平往往会相差超过0.5V,明显影响喇叭的工作平衡位置。BTL功率放大器的正、反相输出端直流电平直流电平相差必须小于0.1V,喇叭的工作平衡位置才不会发生明显偏离自由平衡位置。喇叭的工作平衡位置明显偏离自由平衡位置时,正反方向的机械振动幅度不对称,发出的声波将产生畸变不自然。另外,输出端直流电平与信号输入端直流电平严格一致,才使得使用正、负双电源供电的OCL功率放大器成为现实。否则,因输出端直流电平与电源中点电平相差较大,将导致喇叭不能良好的正常工作。 由于大部分运放IC的工
15、作电压都不高,性能良好的高电压运放IC品种少、价格高,人们也可以采用与运放IC前置级相同的差动放大电路来达到同样目的。图即是采用差动放大方式做前置极的典型电路,它比图所示的互补对称式OTL功率放大器基本电路多用2只要求特性一致的三极管,比图所示的改进型互补对称式OTL功率放大器实用电路多用1只三极管。说倒底,并不是人们不知道怎么设计功率放大器,而是受到器件选择上的限制,在不同历史时期只能使用相应的设计电路。在20世纪80年代后期,人们才开始比较容易找到特性一致的三极管进行配对使用。因差动放大极的静态电流可由电路设计参数准确给定,不用调节差动放大管的静态电流。在图电路使用32V电源的情况下,前置
16、差动放大管的静态电流为0.51mA0.52mA,只要先调节R12使BG1的集电极到地端的电压降为15.4V,再调节R5使BG2BG5的静态工作电流在10mA20mA之间即可。 在调整BG1的静态电流时,同样先要将R5调节成短路0电阻状况使BG2BG5处于截止状态,暂不接入负反馈电阻R10,用导线将BG6、BG0的基极短路。接通电源,先调节R12使BG1集电极到地端的电压降为15.4V0.2V,再调节R5使BG2BG5的静态工作电流为15mA。为保险起见,先将R8与R9换接成100/2W电阻,测量R8与R9上的静态电压降应为1.5V。断开电源,测量R5与R12可调电阻实际所处的电阻值,将它们换成
17、相同阻值的固定电阻。接通电源,测量R8与R9上的静态电压降应保持在1.2V1.8V之间。测量输出中点电平应在16V0.3V之间。断开电源,将BG6、BG0的基极间连接导线取掉,把负反馈电阻R10接入电路。再接通电源,测量R8与R9上的静态电压降应保持在1.2V1.8V之间。测量输出中点电平应在16V0.2V之间,差分管电流放大倍率越大,输出端直流电平与信号输入端直流电平相差越小。用起子碰C1输入端时R8与R9上的电压降明显变大。然后把R8与R9换成0.3电阻,接上喇叭试听。接通电源时输出端中点电压需要从零缓慢上升,因而只产生轻微冲击声。2秒钟后,用手碰C1输入端喇叭将发出“呜”的交流声。将C1
18、输入端与地(电源负端)短路,喇叭应不发出声音,实际会发出轻微背景白噪声或很小声的交流哼声。 三、对功率放大器实用电路的完善 采用自举电路设计的功率放大器虽然电路相对较为简单,但却存在下限工作频率截止点。而引入自举电路是为了避免对上半波进行放大时没有足够电流提供给互补管使用,在不缺三极管使用的情况下,可以采用恒流源来保证对上半波进行放大时也有足够的电流提供给互补管使用。与此同时,将差动放大器也设计成由恒流源提供工作电流,可以大大提高对共态噪声的抑制比和放宽对电源电压的准确要求。图是使用恒流源的功率放大器典型电路,其中:BG3与BG4构成标准恒流源,前者给前置差动放大极提供1mA恒定总电流,2只差
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分立 元件 设计 制作 功率放大器 19
限制150内