GPSRTK技术在地形测量中的应用分(共4页).docx
《GPSRTK技术在地形测量中的应用分(共4页).docx》由会员分享,可在线阅读,更多相关《GPSRTK技术在地形测量中的应用分(共4页).docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上GPS RTK技术在地形测量中的应用分析刘宗波(甘肃建筑职业技术学院,甘肃 兰州 )【摘 要】通过对GPS RTK原理分析以及RTK技术在控制测量、数字测图等工程中的基本应用,对动态GPS的特性和使用方法做了阐述,指出了动态GPS在测量中的重要作用;并对测量精度进行了一定的分析,得出一些有益的结论和体会。【关键词】 RTK技术 流动站 基准站 1 前言GPS(Global Position System)即为全球定位系统的简称,它是一套利用美国GPS卫星导航系统进行全天候、全方位的测量定位设备。根据GPS提供的坐标或坐标演变量精度和方式的不同可以分为毫米级,厘米级,静
2、态,动态后处理,RTK(Real Time Kinematic 实时动态),RTD(Real Time Differnce 实时差分)等几种设备分类和测量方式,其中 RTK是一种定位精度比DGPS高100倍的载波相位差分GPS技术。RTK(Real Time Kinematic)技术又称载波相位动态实时差分技术,其实时动态定位技术效率高,可以在作业现场提供经过检验的测量成果,能够在满足精度的前提下,摆脱后处理的负担和外业返工的困扰。目前,该技术已广泛应用于地形测量、航空摄影测量、地籍测量、房产测量、勘界与拨地测量、工程测量等各个领域。本文主要通过一些实例体会来探讨RTK技术在工程中的应用。2
3、基本方法RTK定位通常由1台基准站接收机和1台或多台流动站接收机以及用于数据传输的电台组成,在RTK作业模式下将一些必要的数据输入GPS控制手簿,如基准站的坐标、高程、坐标系转换参数、水准面拟合参数等;流动站接收机在若干个待测点上设置。基准站与流动站保持同时跟踪至少4颗以上的卫星,基准站不断地对可见卫星进行观测,将接收到的卫星信号通过电台发送给流动站接收机,流动站接收机将采集到的GPS观测数据和基准站发送来的信号传输到控制手簿,组成差分观测值,进行实时差分及平差处理,实时得出本站的坐标和高程。基准站一般架设在已知点(平面坐标或高程已知)上,点位一般位于测区中间,视野开阔,周围无高大的树木、楼房
4、等建筑物影响,远离强电磁波发射源和大面积的水面,如果事先没有确定地心坐标(WGS-84)与当地坐标系的转换参数,也可以将基准站架设在符合上述条件的未知点上。流动站依次设置在待测点上观测。基准站和流动站同时接收卫星信号。基准站通过连接的电台将测站坐标、伪距观测值、载波相位观测值、卫星跟踪状态和接收机工作状态发送给流动站,流动站接收该信息后与卫星信息进行实时差分平差处理,实时得到流动站的三维坐标及其观测精度信息。系统的显著特点是GPS测量技术与数据传输技术组合而成,其数据传输由无线数据链完成,数据链采用UHF频段,具有可靠、稳定和抗干扰能力的优点。求解平面转换参数,至少要联测两个平面坐标点,求解高
5、程转换参数则需要联测三个高程点。为了提高地心坐标系与当地坐标系数学模型的拟合程度,进而提高待测点的精度,通常要联测尽可能多的已知点,转换参数的求得通常有两种方法:充分利用已有的GPS控制网资料,将多个已知点的地心坐标与相应的当地坐标输入电子手簿中,基准站架设在已知点上实地虚拟联测,解算出转换参数;基准站架设在已知点或未知点上,流动站依次测量各已知点的地心坐标,将各已知点所对应的当地坐标系的平面坐标和高程输入手簿中进行点校正,淘汰校正残差比较大的已知点,从而解算出两坐标系之间的转换参数。3 RTK测量实例3.1 RTK在控制测量中的应用在某工业区5平方公里1:500地形测量中,由于厂矿工业区建筑
6、物密,通视困难,采用RTK的技术优势进行测量较为方便。此次测量以工业厂区为主,基准站设置在测区的中部、地势较高的五层楼楼顶,符合基准站的架设条件,与已知点的距离在2.03.0km之间。联测四个D级GPS点和三个三、四等水准点,采用两台双频GPS接收机实时动态测量模式,流动站用支撑杆竖直。布点时为了方便测图使用和便于RTK测量等因素,尽量避开高压线、高大建筑物及高密树林等因素对RTK测量的影响。实在无法回避的地方,采用增加观测时间、增加观测次数的方法以提高观测精度。由于GPS并不需要点间通视,不必为通视的原因而搬好几次站,大大减少了测量时间。流动站仅需一次完成,所以减少了人力、财力。RTK控制测
7、量时,首先用已知控制点建立投影的局部归化参数,仪器将直接记录坐标和高程,查看解算后每个控制点的水平残差和垂直残差。本次测量解算出两坐标系之间的转换参数,水平残差最大为2.5cm,垂直残差最大为0.6cm。为了提高待测点的观测精度,将天线设置在对点器上,观测时间大于20秒,采用不同的时间段进行两次观测取平均值;机内精度指标预设为点位中误差1.5cm,高程中误差2.0cm;观测中,取平面和高程中误差均小于1.0cm时进行记录。RTK点两次观测值坐标较差最大值为2.8cm,最小值为0.3cm。考虑到两次观测采用了同一基准站,观测条件基本相同,可以将其视为同精度双观测值的情况,进而求得观测值中误差和平
8、均值中误差。观测值中误差为0.9cm,平均值中误差为0.6cm(0.9/2)。这说明RTK技术能满足城市测量规范中最弱点的点位中误差(相对于起算点)不大于5cm的要求。同时,我们采用常规手段对RTK控制点进行了四等水准测量。平差后,每公里高差中误差为4.2mm,最弱点高程中误差为6.5mm。在进行RTK平面控制测量的同时,我们也利用RTK技术进行了高程测量。两次RTK高程测量的成果高程较差最大为-4.7cm,最小为0cm.观测值中误差为1.4cm,平均值中误差为1.0cm。四等水准测量与RTK高程测量成果较差高程较差最大为-4.8cm,最小为-0.1cm,高程较差中误差为2.3cm。如果四等水
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- GPSRTK 技术 地形 测量 中的 应用
限制150内