精品最新高二必考数学知识点梳理5篇.doc
《精品最新高二必考数学知识点梳理5篇.doc》由会员分享,可在线阅读,更多相关《精品最新高二必考数学知识点梳理5篇.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新高二必考数学知识点梳理5篇只有高效的学习方法,才可以很快的掌握知识的重难点。有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。下面就是小编给大家带来的高二数学知识点,希望大能帮助到大家! 高二数学知识点1 1、圆的标准方程: 圆心为A(a,b),半径为r的圆的方程 2、点与圆的关系的判断方法:(1),点在圆外(2),点在圆上(3),点在圆内 4.1.2圆的一般方程 1、圆的一般方程: 2、圆的一般方程的特点: (1)x2和y2的系数相同,不等于0. 没有xy这样的二次项. (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个
2、系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。 4.2.1圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系. 4.2.2圆与圆的位置关系 4.2.3直线与圆的方程的应用 1、利用平面直角坐标系解决直线与圆的位置关系; 2、过程与方法 用坐标法解决几何问题的步骤: 第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论. 4.3.1空间直角坐标系 1、点
3、M对应着确定的有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M 4.3.2空间两点间的距离公式 高二数学知识点2 一、直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0 180 (2)直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。 过两点的直线的斜率公式: 注意下面四点:(
4、1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 点斜式:直线斜率k,且过点 注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 斜截式:,直线斜率为k,直线在y轴上的截距为b 两点式:()直线两点, 截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 一般式:(A,B不全为0
5、) 一般式:(A,B不全为0) 注意:1各式的适用范围 2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); (4)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线(是不全为0的常数)的直线系:(C为常数) (二)过定点的直线系 ()斜率为k的直线系:,直线过定点; ()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。 (5)两直线平行与垂直 当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (6)两条直线的交点 相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合 (7)两点间距离公式:设是
6、平面直角坐标系中的两个点,则 (8)点到直线距离公式:一点到直线的距离 (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。 为大家带来了高一数学辅导资料:直线与方程知识点,希望大家能够利用这些内容,更多的高一数学资料,请查阅。 高二数学知识点3 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,dR,那么a+bi=c+di a=c,b=d。特殊地,a,bR时,a+bi=0 a=0,b=0. 复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。 复数相等特别提醒: 一般地,两个复数只能说相等或不相等,而
7、不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。 解复数相等问题的方法步骤: (1)把给的复数化成复数的标准形式; (2)根据复数相等的充要条件解之。 高二数学知识点4 一、集合、简易逻辑(14课时,8个) 1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。 二、函数(30课时,12个) 1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。 三、数列(
8、12课时,5个) 1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。 四、三角函数(46课时,17个) 1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。 五、平面向量(12课时,8个)
9、 1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。 六、不等式(22课时,5个) 1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 最新 必考 数学 知识点 梳理
限制150内