《精品高三数学知识点归纳五篇.doc》由会员分享,可在线阅读,更多相关《精品高三数学知识点归纳五篇.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学知识点归纳五篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在英语上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。下面就是小编给大家带来的高三数学知识点,希望能帮助到大家!高三数学知识点11、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:R2+R(h2+R2)的平方根体积:R2h/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=
2、Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=hS1+S2+(S1S2)1/2/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C底面周长S底底面积,S侧侧面积,S表表面积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R2-r2)11、直圆锥r-底半径h-高V=r2h/312、圆台r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-直径V=4/3r3=d3/614、球缺h-
3、球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=h(2D2+Dd+3d2/4)/15(母线是抛物线形)高三数学知识点21.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序
4、不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,.(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,
5、6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,或1,3,5,7,9,2n-1,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通
6、项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_它的有限子集1,2,n为定义域的函数的表达式.(2)如果知道了数列
7、的通项公式,那么依次用1,2,3,去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,所构成的数列1,1.4,1.41,1.414,1.4142,就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这
8、一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,
9、从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.数列还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。高三数学知识点3随机抽样简介(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;优点:操作简便易行缺点:总体过大不易实行方法(1)抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签
10、上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)(2)随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。分层抽样简介分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为
11、样本,这种抽样方法是一种分层抽样。整群抽样定义什么是整群抽样整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。优缺点整群抽样的优点是实施方便、节省经费;整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。实施步骤先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:一、确定分群的标注二、总体(N)分成若干个互不重叠的部分,每个部分为一群。三、据
12、各样本量,确定应该抽取的群数。四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。与分层抽样的区别整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。系统抽样定义当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,
13、从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;(3)在第一段用简单随机抽样确定第一个个体编号l(lk);(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。高三数学知识点4(一)导数第一定义设函数y=f(x)在点x0的
14、某个领域内有定义,当自变量x在x0处有增量x(x0+x也在该邻域内)时,相应地函数取得增量y=f(x0+x)-f(x0);如果y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f (x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化x(x-x0也在该邻域内)时,相应地函数变化y=f(x)-f(x0);如果y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f (x0),即导数第二定义(三)导函数与导数如果函
15、数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y ,f (x),dy/dx,df(x)/dx。导函数简称导数。(四)单调性及其应用1.利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号(3)若f(x) 0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x) 0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2.用导数求多项式函数单调区间的一般步骤(1)求f(x)(2)
16、f(x) 0的解集与定义域的交集的对应区间为增区间;f(x) 0的解集与定义域的交集的对应区间为减区间高三数学知识点5数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。近几年来,高考关于数列方面的命题主要
17、有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。高三数学知识点归纳五篇第 10 页 共 10 页
限制150内