《精品高一必修一数学知识点归纳5篇精选.doc》由会员分享,可在线阅读,更多相关《精品高一必修一数学知识点归纳5篇精选.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一必修一数学知识点归纳5篇精选高一数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。下面就是小编给大家带来的高一数学必修一知识点,希望能帮助到大家大家!高一必修一数学知识点11.“包含”关系 子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5 5,且5 5,则5=5)实例:设A=x|x2-1=0B=-1,1“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元
2、素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。A A真子集:如果A B,且A1B那就说集合A是集合B的真子集,记作AB(或BA)如果A B,B C,那么A C如果A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。高一必修一数学知识点2一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y(3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合3.集合的表示: 如:我校的篮球队
3、员,太平洋,大西洋,印度洋,北冰洋(1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。x R|x-3 2,x|x-3 23)语言描述法:例:不是直角三角形的三角形4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:x|x2=-5二、集合间的基本关系1.“包含”关系 子集注
4、意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5 5,且5 5,则5=5)实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等”即:任何一个集合是它本身的子集。A A真子集:如果A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果A B,B C,那么A C如果A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2
5、.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题 一题多解指数函数y=axaa_ab=aa+b(a 0,a、b属于Q)(aa)b=aab(a 0,a、b属于Q)(ab)a=aa_ba(a 0,a、b属于Q)指数函数对称规律:1、函数y=ax与y=a-x关于y轴对称2、函数y=ax与y=-ax关于x轴对称3、函数y=ax与y=-a-x关于坐标原点对称对数函数y=logax如果,且,那么:1 2-;3.注意:换底公式(,且;,且;).幂函数y=xa(a属于R)1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1
6、)所有的幂函数在(0,+ )都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:1(代数法)求方程的实数根;2(几何法)对于不能用求根
7、公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.(1) 0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3) 0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.三、平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.相等向量:长度相等且方向相同的向量向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角
8、形法则。已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b| |a|+|b|。向量的加法满足所有的加法运算定律。减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。数乘运算实数 与向量a的积是一个向量,这种运算叫做向量的数乘,记作 a,| a|=| |a|,当 0时, a的方向和a的方向相同,当 0时,
9、a的方向和a的方向相反,当 =0时, a=0。设 、 是实数,那么:(1)( )a= ( a)(2)( )a= a a(3) (a b)= a b(4)(- )a=-( a)= (-a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a|b|cos 叫做a与b的数量积或内积,记作a?b, 是a与b的夹角,|a|cos (|b|cos )叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积。两个向量的数量积等于它们对应坐标的乘积的和。四、三角
10、函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法高一必修一数学知识点3一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k 0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像
11、 一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.k,b与函数图像所在象限:当k 0时,直线必通过一、三象限,y随x的增大而增大;当k 0时,直线必通过二、四象限,y随x的增大而减小。当b 0时,直线必通过一、二象限;当b=0时,直线通过原点当b 0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k 0时,
12、直线只通过一、三象限;当k 0时,直线只通过二、四象限四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b.(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b 和y2=kx2+b (3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt.2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S.g=S-ft.六、常
13、用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长: (x1-x2) 2+(y1-y2) 2(注:根号下(x1-x2)与(y1-y2)的平方和)高一必修一数学知识点4指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。(3)函数图形都是下凹的。(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5)可
14、以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。(8)显然指数函数_。高一必修一数学知识点5一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。2、集合的中元素的三个特性
15、:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。(2)元素的互异性:一个给定集合中的元素是的,不可重复的。(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示: (1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2)集合的表示方法:列举法与描述法。a、列举法:将集合中的元素一一列举出来a,b,c b、描述法:区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。x R|x-3 2,x|x-3 2语言描述法:例:不是直角三角形的三角形Venn图:画出一条封闭的曲线,曲线里面表示集合。4、集合的分类:(1
16、)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a A(2)元素不在集合里,则元素不属于集合,即:aA注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1) 子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。二、函数的概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)
17、和它对应,那么就称f:A-B为从集合A到集合B的一个函数.记作:y=f(x),x A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合f(x)|x A叫做函数的值域.函数的三要素:定义域、值域、对应法则函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫
18、做函数y=f(x),(x A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。(3)函数图像平移变换的特点:1)加左减右 只对x2)上减下加 只对y3)函数y=f(x)关于X轴对称得函数y=-f(x)4)函数y=f(x)关于Y轴对称得函数y=f(-x)5)函数y=f(x)关于原点对称得函数y=-f(-x)6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=|f(x)|7)函数y=f(x)先作x 0的图
19、像,然后作关于y轴对称的图像得函数f(|x|)三、函数的基本性质1、函数解析式子的求法(1、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域
20、是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3、相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致(两点必须同时具备)4、区间的概念:(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5、值域(先考虑其定义域)(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;(2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范
21、围。(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(4)常用的分段函数有取整函数、符号函数、含绝对值的函数7.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A-B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)-B(象)”对于映射f:A B来说,则应满足:(1)集合A中的每一个元素,在集合B
22、中都有象,并且象是的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数8、函数的单调性(局部性质)及最值(1、增减函数(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1(2)如果对于区间D上的任意两个自变量的值x1,x2,当x1注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种(2、图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y
23、=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3、函数单调区间与单调性的判定方法(A)定义法:任取x1,x2 D,且x1作差f(x1)-f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)-f(x2)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数:如果y=f(u)(u M),u=g(x)(x A),则y=fg(x)=F(x)(x A)称为f、g的复合函数。复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相
24、关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.9:函数的奇偶性(整体性质)(1、偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2、奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)= f(x),那么f(x)就叫做奇函数.(3、具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;b、确定f(
25、-x)与f(x)的关系;c、作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.(4)利用奇偶函数的四则运算以及复合函数的奇偶性a、在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由
26、f(-x) f(x)=0或f(x)/f(-x)= 1来判定;(3)利用定理,或借助函数的图象判定.10、函数最值及性质的应用(1、函数的最值a利用二次函数的性质(配方法)求函数的(小)值b利用图象求函数的(小)值c利用函数单调性的判断函数的(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);(2、函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性。(3、判断含糊单
27、调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。(4)绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。(5)在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。1.精选高一数学知识点总结归纳5篇2.最全高一数学知识点归纳5篇3.精选最新高一数学知识点总结归纳5篇4.高一数学知识点大全5篇5.最新高一数学知识点5篇总结高一作文他生气了800字 首夏犹清和,芳草亦未歇”,本来是美好快乐的,可因为一件事,一切都变得不再那么美好 借物喻人作文600字高一 闻着春的气息,听见春的脚步,看见春的身影。已是六年级的毕业班学生,随之而来的压力 高一作文开学第一天优秀范文 今天是开学第一天。这一天是令人激动的,是崭新的一天。下面是小编给大家带来的开学第 以生活启示为题的作文高一 在生活中启示无处不在,每个人都会受到启发。我也是这样,就在今天我受到了蚂蚁的启示第 23 页 共 23 页
限制150内