《精品高三数学知识点总结归纳三篇.doc》由会员分享,可在线阅读,更多相关《精品高三数学知识点总结归纳三篇.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学知识点总结归纳三篇在高考这场没有硝烟的战场上,得数学者得天下!数学可以帮助同学们与其他人拉开一大段距离。高三复习好数学实在是太重要了。下面就是小编给大家带来的高三数学知识点总结,希望能帮助到大家!高三数学知识点总结(一)1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x) f(-x)=0或(f(x) (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复
2、合函数的有关问题(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式a g(x) b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于x a,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a
3、(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a 0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周
4、期为2a的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k D(D为f(x)的值域);6.a f(x)恒成立a f(x)max,;a f(x)恒成立a f(x)min;7.(1)(a 0,a 1,b 0,n R+);(2)l
5、ogaN=(a 0,a 1,b 0,b (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a 0,a 1,N 8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(6)y=f(x)与y=f-1(x)互为反函数,设
6、f(x)的定义域为A,值域为B,则有ff-1(x)=x(x B),f-1f(x)=x(x A);11.处理二次函数的问题勿忘数形结合二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;12.依据单调性利用一次函数在区间上的保号性可解决求一类参数的范围问题;13.恒成立问题的处理方法(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;高三数学知识点总结(二)a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1
7、)r.可用归纳法证明。n=1时,a(1)=a+(1-1)r=a。成立。假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+(k+1)-1r.通项公式也成立。因此,由归纳法知,等差数列的通项公式是正确的。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+(a+r)+.+a+(n-1)r=na+r1+2+.+(n-1)=na+n(n-1)r/2同样,可用归纳法证明求和公式。a(1)=a,a(n)为公比为r(r不等于0)的等比数列通项公式:a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n
8、-1)=a(1)r(n-1)=ar(n-1).可用归纳法证明等比数列的通项公式。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+ar+.+ar(n-1)=a1+r+.+r(n-1)r不等于1时,S(n)=a1-rn/1-rr=1时,S(n)=na.同样,可用归纳法证明求和公式。高三数学知识点总结(三)1、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0 180 2、直线的斜率定义:倾斜角不是90 的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与
9、轴的倾斜程度。过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90 (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0 时,k=0,直线的方程是y=y1。当直线的斜率为90 时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。最全高三数学重点知识点总结三篇 有一个正确的学习方法对学好数学是起到关键性作用的,例如时常总结知识点,复习起来就 2020最新高三数学知识点总结归纳三篇 数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学 2020高三数学知识点归纳总结三篇 对于很多高三的同学们来说,高三数学的复习就是噩梦一般的存在,其知识点非常的繁琐复 2020最新高三数学知识点归纳总结三篇 通过归纳总结知识点能够大大的提高高三数学的学习效率,为了帮助同学们减轻学习负担,第 8 页 共 8 页
限制150内