《精品高二数学知识点总结梳理五篇分享.doc》由会员分享,可在线阅读,更多相关《精品高二数学知识点总结梳理五篇分享.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学知识点总结梳理五篇分享高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依赖初中时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培养自己主动获取知识、巩固知识的能力,制定学习计划,养成自主学习的好习惯。下面就是小编给大家带来的高二数学知识点总结,希望能帮助到大家!高二数学知识点总结1一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.过两点(x1
2、,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。3、直线方程:点斜式:直线过点斜率为,则直线方程为,斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相
3、交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:方程(a b 0)注意还有一个;定义:|PF1|+|PF2|=2a e=长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:方程(a,b 0)注意还有一个;定义:|PF1|-|PF2|=2a e=;实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:方程y2=2px注意还有三个,能区别开口方向;定义:|PF|=d焦点F(,0),准线x=-;焦半径;焦点弦=x1+x2+p;4、直线被圆锥曲线截得的弦长公式
4、:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o x 、o y 、使x o y =45(或135);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:柱体:表面积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h锥体:表面积:S=S侧+S底;侧面积:S侧=;体积:V=S底h:台体表面积:S=S侧+S上底S下底侧面积:S侧=球体:表面积:S=;体积:V=4、位置关系的证明(主要方法):
5、注意立体几何证明的书写(1)直线与平面平行:线线平行线面平行;面面平行线面平行。(2)平面与平面平行:线面平行面面平行。(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤-.找或作角;.求角)异面直线所成角的求法:平移法:平移直线,构造三角形;直线与平面所成的角:直线与射影所成的角高二数学知识点总结2等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。面积公式若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:S=ab/2。且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积
6、可表示为:S=ch/2=c2/4。等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45,斜边上中线角平分线垂线三线合一。高二数学知识点总结3(1)总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,.,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一
7、定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。(3)简单随机抽样常用的方法:抽签法随机数表法计算机模拟法在简单随机抽样的样本容量设计中,主要考虑:总体变异情况;允许误差范围;概率保证程度。(4)抽签法:给调查对象群体中的每一个对象编号;准备抽签的工具,实施抽签;对样本中的每一个个体进行测量或调查高二数学知识点总结4等差数列对于一个数列an,如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。那么,通项公式为,其求法很重要,利用了“叠加原理”的思想
8、:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。等比数列对于一个数列an,如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”
9、的思想:a2=a1_,a3=a2_,a4=a3_,an=an-1_,将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。此外,当q=1时该数列的前n项和Tn=a1_当q1时该数列前n项的和Tn=a1_1-q(n)/(1-q).高二数学知识点总结51、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。3.常见函数的导数公式:4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。(2)求极值的步骤:求导数;求方程的根;列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:求的根;把根与区间端点函数值比较,的为值,最小的是最小值。高二数学知识点总结梳理五篇分享第 6 页 共 6 页
限制150内