2021[三角形的外角教案] 三角形的外角教案导入.doc
《2021[三角形的外角教案] 三角形的外角教案导入.doc》由会员分享,可在线阅读,更多相关《2021[三角形的外角教案] 三角形的外角教案导入.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021三角形的外角教案 三角形的外角教案导入杜淑珠三角形外角的教案7.2. 2三角形的外角教案凤翔中学 杜淑珠教学目标: (1)、知识目标:1、探索三角形的一个外角等于与它不相邻的两个内角的和; 2、探索三角形的一个外角大于与它不相邻的任何一个内角; 3、能应用三角形外角的性质解决一些简单的实际问题。 (2)、能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。 (3)、情感目标:会用数学知识解决一些简单的实际问题,增强应用意识,使学生进一步认识数学来源于实践
2、反过来又服务于实践的辨证唯物主义观点。 教学过程 一:引入问题1在一块平地上,有一个密闭的三角形房间(内部不能到达),你有办法得 二:探究新知1、什么是三角形的外角?三角形的一边与另一边的延长线组成的角,如图ACD 外角的特征:(1)顶点在三角形的一个顶点上 (2)一条边是三角形的边(3)另一条边是三角形某条边的延长线 (4)每个外角与它相邻的内角互为邻补角。 探究:请根据图形填空AB ACB (三角形内角和定理)ACDACB (邻补角的定义)你能根据上面两个等式得到什么样的式子,能用自己的语言表达吗? ACD ABACD A ACD B结论: 三角形的一个外角等于与它不相邻的两个内角的和.
3、证一证擅长画平行线的小明用另一种方法解释了这个性质,看动画,你知道他是怎么解释的吗? (CE/BA)三角形的外角与内角的关系:1、三角形的一个外角与它相邻的内角2、三角形的一个外角与它不相邻的两个内角的和;3、三角形的一个外角任何一个与它不相邻的内角。 例1如图 D是ABC的BC边上一点, BBAD,ADC80,BAC=70. 求:(1)B的度数;(2)C的度数. 三:练一练说出下列图中1和2的度数。 练一练2把图中1、 2、 3按由大到小的顺序排列 例2:如图1,2 ,3是ABC的三个外角,12 3 ? 从哪些途径探究这个结果 解:1 BAC=180 2 ABC=180 3 ACB=180
4、三个式子相加得到1 2 3 BAC ABCACB=540 而BAC ABCACB=180 1 2 3360练一练3在一个三角形花坛的外围走一圈,在每一个拐弯的地方都转了一个角度( 1, 2, 3),那么回到原来位置时,一共转了几度? 练一练4A+ B+ C+ D+ E的度数 小结以“你本节有什么收获”为话题开展交流。 1、三角形的两个性质 三角形的一个外角等于与它不相邻 的两个内角的和。三角形的一个外角大于任何一个与它 不相邻的内角。2、三角形的外角和是360作业:P76 第5、6题 五、课后练习1、如图1所示,CAB的外角等于120,B等于40,则C 的度数是_ 图1 图2 图3 图4图52
5、、如图2所示,1=_3、如图3所示,若A=32,B=45,C=38,则AEB= 度,DFE= 度。4、如图4,A=50,B=40,C=30,则BDC=_。5、如果一个三角形的各内角与一个外角的和是225,则这个外角是 度,与这个外角相邻的内角是 度。6、如图5,在ABC中,A=70,BO,CO分别平分ABC和ACB,求BOC的度数 11.2.2三角形的外角教案11.2.2 三角形的外角平邑兴蒙学校 崔连金 【教学任务分析】【教学环节安排】教后反思:1、课件的使用,激发了学生学好数学的决心。教学过程中对于外角和两个内角的关系时,稍微用的时间比较长,有些学生觉着是这么回事,但是不理解,从做题中还是
6、使用三角形内角和可以看出来,因此教师可以把一个题用两种方法都做出来,通过比较提高学生的认识,强调做数学题要用简便方法.2、任何一个三角形都有6个外角,其中两两互为对顶角.而三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.这一点应重点强调,上课时忽落了这一点,辅导时要加以强调.3、内外结合,天下无敌(利用内角和定理和外角关系,能解决三角形角度问题). 7.2.2三角形的外角教案7.1. 2三角形的外角教案城关中学二分校 姜新建学习目标:1、探索并掌握三角形的外角的两条性质;2、利用学过的定理论证这些性质;3、能利用三角形的外角性质解决实际问题。重点:(1)三角形的外角
7、的性质;(2)三角形外角和定理;难点:(1)三角形外角的定义及定理的论证过程;(2)利用三角形的外角性质解决实际问题。 教学过程一、自学指导请同学们自学教材P74 P75页的内容,动手操作并解决问题:1、三角形的内角和定理是: 。2、如图1,把ABC的一边BC延长到D,得ACD,我们把ACD叫做三角形的 角。 思考:在ABC中,除了ACD外,还有那些外角?请在图2中分别画出来;以点C为顶点的外角有 个;所以,ABC共有 个外角;外角ACD与内角ACB的关系是:互为 角。【归纳1】三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有个外角;每一个顶点相对应的外角
8、都有个;每个外角与它相邻的内角互为邻补角。 3、如图3,ABC中,A=70,B=60,ACD是ABC的一个外角。能由内角A,B求出外角ACD吗?如果能,外角ACD与内角A,B有什么关系?认真思考,完成下面的填空:(1)ACB= 度;ACD= 度;A+B= 度;ACD A+B(填“,或=” )。(2)ACD A(填“,或=” ); ACD B(填“,或=” )。4、聪明的你,能用一句话概述你的发现吗?【归纳2】三角形的一个外角等于与它不相邻的 的和。三角形的一个外角大于任何一个 内角。你能用学过的定理说明上面这些定理的正确性吗?已知:如图4,ACD是ABC的外角;说明:(1)ACD=A+B; (
9、2)ACDA,ACDB。解:ACB+ + =180(三角形内角和定理),ACB+ACD=180(平角的意义), 1ACD= + (等量代换),又A0,B0,ACD A,ACD B (和大于部分)。 二、自学检测111、求下列各图中1的度数。6035 50 EA2、如图5,BAE,CBF,ACD是ABC的三个外角, 1它们的和是多少?由此,你有什么发现?23BC F图5 三、教学指导每一个三角形都有个外角;每个外角与它相邻的内角互为邻补角;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角;三角形的三个外角和等于360。四、当堂训练1、说出下列图中1和2的
10、度数。 120 1D 2、如图,D是ABC的BC边上一点,BBAD,ADC80,BAC=70;求:(1)B的度数;(2)C的度数. 2五、课后练习1、如图1所示,CAB的外角等于120,B等于40,则C 的度数是_ 图1 图2 图3 图4 图5 2、如图2所示,1=_ 3、如图3所示,若A=32,B=45,C=38,则AEB= 度,DFE= 度。 4、如图4,A=50,B=40,C=30,则BDC=_。 5、如果一个三角形的各内角与一个外角的和是225,则这个外角是 度,与这个外角相邻的内角是 度。 6、如图5,在ABC中,A=70,BO,CO分别平分ABC和ACB,求BOC的度数 3教案三角
11、形的稳定性、三角形的内外角【 知识点讲解 】 1三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性 注意:(1)三角形具有稳定性;(2)四边形没有稳定性.2三角形的内角和定理:三角形的内角和等于180 推理过程:一、作CMAB,则4=1,而2+3+4=1800, 即A+B+ACB=1800二、作MNBC,则2=B,3=C,而1+2+3=1800, 即BAC+B+C=1800注意:(1)证明的思路很多,基本思想是组成平角(2)应用内角和定理可解决已知二个角求第三个角或已知三角关系求三个角(3)特殊三角形的内角关系:直角三角形两锐角互余;等边三角形每个内角都等于60
12、0A3三角形的外角的定义三角形一边与另一边的延长线组成的角,叫做三角形的外角. B注意:每个顶点处都有两个外角,但这两个外角是对顶角. 如:ACD、BCE都是ABC的外角,且ACD=BCE. 所以说一个三角形有六个外角,但我们每个一个顶点处 1 只选一个外角,这样三角形的外角就只有三个了.4三角形外角的性质(1) 三角形的一个外角等于与它不相邻的两个内角之和 (2) 三角形的一个外角大于与它不相邻的任何一个内角 注意:(1)它不相邻的内角不容忽视; A(2)作CMAB由于B、C、D共线A=1,B=2. 1 那么ACDA.ACDB.BC M 【 例题讲解 】1.如图,工人师傅砌门时,常用木条EF
13、固定矩形门框ABCD,使其不变形,这种做法的根据是( )A两点之间线段最短 B矩形的对称性 C矩形的四个角都是直角 D三角形的稳定性 2.王师傅用4根木条钉成一个四边形木架,如图要使这个木架不变形,他至少还要再钉上几根木条?()A0根 B1根 C2根 D3根 3. 在一个三角形中,下列说法错误的是( )A可以有一个锐角和一个钝角 B可以有两个锐角C可以有一个锐角和一个直角 D可以有两个钝角4. 已知一个三角形三个内角度数的比是156,则其最大内角的度数为( )A60 B75 C90 D120 5. 如图所示,1为三角形的外角的是( ) 2【 变式训练 】1.下列图中具有稳定性的是( ) A B
14、 C D2.在生活中,我们常常会看到如图所示的情况,在电线杆上拉两根钢筋来加固电线杆,这样做的依据是 . 3. 若一个三角形三个内角度数的比为234,那么这个三角形是( )A直角三角形 B锐角三角形 C钝角三角形 D等边三角形4. ABC中,若BAC,则ABC是_三角形 5.如图,ABC中,A70,B60,点D在BC的延长线上,则ACD等于( ) A100 B120 C130 D150 6. 如图,1,2,3的大小关系为( ) A213 B132 C321 D1237.如图,将一副三角板按图示的方法叠在一起,则图中等于_ 38.如图,已知ABC中,B65,C45,AD是BC边上的高,AE是BA
15、C的平分线,求DAE的度数 【 巩固提高 】1.人站在晃动的公共汽车上若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了 .2如图,是边长为25cm的活动四边形衣帽架,它应用了四边形的 课后作业 4 54多边形的内角和与外角和教案14 多边形的内角和与外角和教案第1课时教学目标知识与技能:表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形);情感态度价值观:1、通过探索过程进一步体会知识点之间的联系;2、通过本节的学习进一步体会数学与现实生活的紧密联系教学重难点表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形)教学过程(一)引入你能从图1中找出几个由一些线段围成
16、的图形吗? 图1(二)知识点我们学过三角形,类似地,在平面内,由一些线段首尾顺次相接组成的图形叫做多边形(polygon)多边形按组成它的线段的条数分成三角形、四边形、五边形三角形是最简单的多边形如果一个多边形由n条线段组成,那么这个多边形就叫做n边形如图2,螺母底面的边缘可以设计为六边形,也可以设计为八边形 图2多边形相邻两边组成的角叫做它的内角图3中的A、B、C、D、E是五边形ABCDE的5个内角多边形的边与它的邻边的延长线组成的角叫做多边形的外角图4中的1是五边形ABCDE的一个外角 图3 图4 图5连接多边形不相邻的两个顶点的线段,叫做多边形的对角线(diagonal)图5中,AC、A
17、D是五边形ABCDE的两条对角线特别提醒:n边形(n3)从一个顶点可引出(n3)条对角线,把n边形分割成(n2)个三角形,共有对角线n(n-3)条 2例如:十边形有_条对角线在这里n=10,就可套用对角线条数公式n(n-3)10(10-3)=35(条)22 图6如图6(1),画出四边形ABCD的任何一条边(例如CD)所在直线,整个四边形都在这条直线的同一侧,这样的四边形叫做凸四边形而图6(2)中的四边形ABCD就不是凸四边形,因为画出边CD(或BC)所在直线,整个四边形不都在这条直线的同一侧类似地,画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形本
18、节只讨论凸多边形我们知道,正方形的各个角都相等,各条边都相等像正方形那样,各个角都相等,各条边都相等的多边形叫做正多边形图7是正多边形的一些例子 图7特别提醒:(1)正多边形必须两个条件同时具备:各内角都相等;各边都相等例如:矩形各个内角都相等,它就不是正四边形再如:菱形各边都相等,它却不是正四边形第2课时教学目标知识与技能:1、探索并说出多边形的内角和与外角和公式;2、进一步发展说理能力和简单的推理能力过程与方法:经历探索多边形内角和与外角和公式的过程,实际测量,推理情感态度价值观:1、通过探索过程进一步体会知识点之间的联系;2、通过本节的学习进一步体会数学与现实生活的紧密联系教学重难点重点
19、是多边形的内角和与外角和定理难点是学会善于运用三角形的有关知识来研究多边形的问题,能够灵活运用多边形内角和与外角和解决相关问题教学过程(一)思考三角形的内角和等于180正方形、长方形的内角和都等于360,其他四边形的内角和等于多少?(二)探究任意画一个四边形,量出它的4个内角,计算它们的和再画几个四边形,量一量,算一算你能得出什么结论?能否利用三角形内角和等于180得出这个结论?如图8,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360 图8从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图9,请填空: 图
20、9从五边形的一个顶点出发,可以引_条对角线,它们将五边形分为_个三角形,五边形的内角和等于180_从六边形的一个顶点出发,可以引_条对角线,它们将六边形分为_个三角形,六边形的内角和等于180_通过以上问题,你能发现多边形的内角和与边数的关系吗?一般地,怎样求n边形的内角和呢?请填空:从n边形的一个顶点出发,可以引_条对角线,它们将n边形分为_个三角形,n边形的内角和等于180_总结:过n边形的一个顶点可以做(n3)条对角线,将多边形分成(n2)个三角形,每个三角形内角和180所以n边形内角和(n2)180把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?方法2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形的外角教案 2021三角形的外角教案 三角形的外角教案导入 2021 三角形 外角 教案 导入
限制150内