控制爆破施工工法.docx
《控制爆破施工工法.docx》由会员分享,可在线阅读,更多相关《控制爆破施工工法.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上石方路基控制爆破施工工法1、前言控制爆破技术就是根据工程要求、周围环境和爆破控制对象等具体条件,通过精心设计,采用各种施工与防护技术措施,严格地控制炸药爆炸能量释放和介质破碎过程,既要达到预期的爆破效果,又要将破坏范围、倒塌方向以及爆破危害(地震波、飞石、空气冲击波、和噪声等)严格控制在规定的限度以内,这是一种对爆破效果和爆破安全进行双重控制的爆破技术。由于龙永十三标项目路基紧挨G209国道,公路沿线房屋多而集中,有一部分破旧不堪,墙体多为夯土墙,能承受爆破震动的允许值很小,且距路基边线特近。在多次爆破中,明显有飞石到达G209国道和民房,导致村民频频出现阻工现象,严
2、重影响了项目施工进度。针对这种特殊的环境,龙永项目与国防科技大学湖南工程兵学院毛益松教授合作,共同制定出一套能够满足该地安全、顺利施工的方法,既可以保持与当地村民的关系,又可以保证施工进度。2、工法特点在复杂环境下进行大规模石方深孔控制爆破比采用普通爆破的优越性,主要表现在以下几个方面:(1)为能有效控制爆破效果,保证开挖顺利,针对不同的地质和施工环境,采用相应的控制爆破技术。(2)能极大地减少震动和冲击波,有效防止飞石,保证建筑设施安全。(3)爆破的岩石“开裂、凸起、松动而不飞散”,岩石破碎效果好,有利于加快清运作业速度。(4)复杂环境深孔控制爆破技术无论从施工组织方面还是造价方面都增加了投
3、资,但保证爆破施工工程质量。3、适用范围控制爆破技术适用于各种附近有建筑物、道路及其它防震动设施的施工项目。4、工艺原理随着我国爆破器材日益完善,主线路基石方、连接线石方和服务区石方主要采用深孔爆破技术。施工中,采用深孔爆破主要碰到以下几方面的难题:(1)爆破飞石安全控制。爆破安全控制方面最常见的就是爆破飞石和振动问题,几乎所有爆破场地都会遇到飞石和地震安全防护。而深孔爆破对冲击波、尘烟等危害较小,因此,深孔爆破的安全控制主要针对爆破飞石和振动两方面(本文主要详谈爆破飞石问题)。(2)岩石大块率居高不下。大块率是衡量深孔爆破效果优劣的主要指标,岩溶地区除了地表面石芽、探头石的大块外,由于孔距和
4、排距参数参差不齐而大块率过高将增加二次破碎成本,爆块大块还使装挖和碎石工序损耗增加。(3)钻孔速度慢和炸药单耗高。提高钻孔速度和降低炸药单耗是深孔爆破技术发展和推广应用的基本,而岩溶地区深孔爆破成本很高,很难降低,给施工单位压力很大。5、施工工艺及操作要点 本次爆破使用2岩石乳化炸药;炸药密度0.951.25/cm3;爆速3500m/s。5.1.1 深孔的布孔方式本次爆破钻孔采用高风压潜孔钻,中深孔直径为90100mm,露天深孔按排列的方向来分,有垂直深孔和倾斜深孔两种,采用潜孔钻机时多以斜孔为主。如图4-1所示。露天台阶倾斜深孔爆破比垂直深孔爆破有下列优点:(1)抵抗线较小而且均匀,岩石的破
5、碎质量好,留根底较少。(2)爆破后容易保持台阶坡面角和坡面的平整,减少突悬部分和裂缝。(3)钻孔机械和台阶坡顶线之间的距离较大,作业时人员和设备比较安全。倾斜深孔主要缺点是增加了炮孔长度。按照一次爆破排数多少的不同,可将露天深孔爆破分为单排布置和多排布置两种。采用多排爆破时,常将相邻两排炮孔交错排列。图5-1 台阶(梯段)深孔爆破孔网示意图露天台阶深孔爆破参数选择得是否合理,直接关系到爆破工程的效率、爆破质量、爆破成本等,所以应当重视参数的选择。5.1.2 深孔爆破参数设计(1)孔径本工程钻孔中深孔爆破使用浙江开山牌KY100型履带式露天潜孔钻车、LGY-16/13G空压机,钻孔直径D=100
6、mm,钻杆长每根3m。(2)底盘抵抗线1露天深孔爆破的最小抵抗线的两种表示方法,即最小抵抗线W和底板抵抗线W1。前者是指由装药中心到台阶坡面的最小距离;后者是指炮孔中心线至台阶坡底线的水平距离。为了计算方便和有利于减少留根底,一般不用最小抵抗线为参数,而用底板抵抗线。底板抵抗线的大小与下列因素有关:钻机的钻孔直径:孔径越大,底板抵抗线也相应越大;被爆岩石的性质:可爆性好的岩石可以取较大值;孔底使用的炸药:炸药威力大,底板抵抗线的值可越大;梯段高度:高度越高,所取的底板抵抗线的值应该越大,但当梯段高度超过一定值后,底板抵抗线值与梯段高度无关。底板抵抗线可用下式确定:W1=kd式中:k国内公路建设
7、:f=13,k=3033;f=10,k=3537;f=8,k=3840;f=6,k=4143。d孔径,mm。W1般在2.53.5m之间。本工程取2.53.0m。(3)孔深与超深孔深随地形变化而变化,一般为68m;超深通常为(0.150.35)1,取L3=0.51.0m。(4)孔距和排距孔距(1.01.25)1,取2.53.0m。排距(0.91.0)1,取b=2.7m。(5)填塞长度合理的填塞长度1(3040)。爆破时为避免飞石的产生,尤其是杜绝个别飞石垂直升起,炮孔填塞长度必须大于最小抵抗线2050cm,取13.0m。(6)单位炸药消耗量根据岩石的可爆性、炸药种类、自由面条件、起爆方式、块度要
8、求并结合试爆情况确定。根据爆破手册(汪旭光主编,冶金工业出版社,2010.10),单位炸药消耗量见表4-1,如当岩石坚固系数f为10时,单位炸药消耗量q值为0.67kg/m3以上,本次工程炸药单耗取0.400.50kg/m3,准确值由现场试爆确定。表5-1 深孔爆破单位耗药量岩石硬度系数f0.823456810121416单耗量q(kg/m3)0.400.450.500.550.610.670.740.810.98(7)单孔装药量1)单排孔爆破或多排孔爆破的第一排孔的单孔装药量计算Q=q.a.W1.H式中:Q炮孔装药量;kgq单位炸药消耗量,kg/m3;a孔距,m;H台阶高度,m;W1底盘抵抗
9、线,m。2)多排孔爆破时装药量的计算在多排孔爆破时,从第二排起,以后各排在爆破时,因受前面各排岩石的阻力的作用,装药应有所增加。可用下述公式计算Q1=K.q.a.b.HK为后排孔因岩石阻力而增加的系数,采用微差爆破时取K=1.01.2,采用齐发爆破时取K=1.21.5。一般K=1.11.2,取K=1.1。第1排的单孔装药量为qa1,2534kg;第2排单孔装药量(1.11.2)ab,则2836kg。5.1.3 装药结构与填塞单孔装药量按Q=qWHa计算,边孔在无侧向临空面时其药量增加10%20%。装药结构采用连续装药,起爆体的位置一般安排在离装药顶面或底面的1/3处,起爆装药的聚能穴指向主装药
10、方向。堵塞长度与最小抵抗线、钻孔直径和爆区环境有关。因环境条件不许有飞石,堵塞长度取钻孔直径的3035倍(取2.73.0m),堵塞材料可用泥土或钻孔时排出的岩粉,但其中不得混有大于30mm的岩块。5.1.4 起爆网路设计起爆网路如图4-2所示, 炮孔内同列装同段非电毫秒雷管, 第一列装11段(460ms), 第二列装13段(640ms), 第三列装15段(880ms)。炮孔装药堵塞完毕后, 在孔外排之间的孔用3段(50ms)或5段(110ms)非电毫秒雷管将各炮孔导爆管联接起来, 其延期时间及间隔标在图4-2中, 一次爆破39孔单孔单响, 单响最大药量为20kg, 总药量为780kg。11段4
11、6013段64015段88051093056098061010301110153096010101060810860910660710760138014301480123012801330108011301180690740790114011901240990104010908408909401290孔内用高段位雷管,主要是考虑在第1个装药起爆时,孔外网路应全部起爆或已传爆过去相当的距离,从而避免先起爆的装药爆破时对孔外起爆网路的损伤。孔外用低段位雷管,可在保证各分段爆破产生的震动不会叠加的基础上缩短整个起爆的时间,使建(构)筑物承受的震动总延时减少。图4-2 爆破网路示意图(单位:ms)5.
12、2 光面预裂爆破参数选择与装药量计算5.2.1 概述(1)路基边坡比:1:0.75,两相邻间肩台高差12.0m,肩台宽度为2m。(2)光面和预裂爆破概念:光面爆破是一种控制爆破方法。其特点是在设计开挖轮廓线上钻凿一排孔距与最小抵抗线相匹配的光爆孔,并采用不偶合装药或其他特殊的装药结构,在开挖主体的装药响炮之后,光爆孔内的装药同时起爆,从而形成一个贯穿光爆炮孔、光滑平整的开挖面。预裂爆破也是一种控制爆破方法。其特点是在设计开挖轮廓线上钻凿一排孔距合适的预裂孔,并采用不偶合装药或其他特殊的装药结构,在开挖主体爆破之前,同时起爆预裂炮孔内的装药,从而形成一条贯穿预裂炮孔的裂缝,如图5-3预裂爆破示意
13、图,通过这条裂缝降低开挖主体爆破时对保留岩体的破坏。图5-3 预裂爆破示意图(3)预裂爆破和光面爆破的优点很突出,主要表现在:一是可以减少超挖、欠挖工程量,节省装运、回填、支护费用。二是开挖面光滑平整,有利于后期的施工作业。三是对保留岩体的破坏影响小,有利于边坡的稳定。四是由于预裂缝的存在,可以放宽对开挖主体爆破规模的限制,提高工效。预裂光面爆破的效果如何,很大程度上取决于工程中爆破参数选择和爆破控制技术。4.2.2 药孔参数设计(1)炮孔直径d为克服普通爆破法处理边坡的弊端,预裂孔直径的选定本着以下原则:一是根据现场主体开挖爆破所用的穿孔机具情况,尽量使用同一型号;二是尽量避免或减小爆破对边
14、坡围岩的损害;三是尽可能采用同品种工业炸药,不定制特殊药卷。本工程主体开挖爆破穿孔设备为89100mm潜孔钻机,炮孔直径为100mm;使用炸药为同一厂家生产的岩石乳化炸药32mm的卷状药。因此,本工程边坡预裂爆破炮孔亦采用90mm潜孔钻机钻凿,其炮孔直径为100mm,即d=100mm。(2)炮孔间距a本工程预裂爆破的目的是使沿设计边坡面上布置的预裂炮孔之间产生贯通裂缝,以形成较平整的断裂面,并在临近主爆炮孔爆破时能阻减其产生的爆破应力波及地震效应对边坡围岩的损伤。因此,预裂爆破炮孔间距的确定,应考虑岩石的物理力学性质,炸药爆炸性能和装药结构及其参数等。本工程主要参照瑞典兰格弗尔斯给出的公式确定
15、。a=(812)d ( d60mm)式中:a为预裂爆破炮孔间距,cm;d为预裂炮孔直径,cm;对软岩或结构破碎的岩石,取小值,对硬岩或完整性好的岩石取大值。根据以往工程经验并经试验检验,本工程实取预裂孔间距为100120cm,即a=100120cm。(3)平均线装药量预裂爆破只要求形成贯通预裂缝,而不是大量崩落岩石,也不能损伤围岩,因此不宜采用过大的装药量。本工程采用二套经验公式计算,然后经试爆确定其值。长江科学院经验公式q线=0.034压0.063a0.67式中:q线为预裂炮孔每米装药量,kg/m;压为岩石极限抗压强度,MPa,据地质报告资料,取压=60MPa;a为预裂孔间距,a=1.01.
16、2m。那么q线=0.4480.612kg/m。考虑岩性及孔网参数的经验公式式中:q线为预裂孔线装药量,g/m;k为岩石系数,坚硬岩石为0.6 ,中等强度岩石为0.40.5,软岩或较破粹岩为0.30.4,取k=0.5。则q线=500g/m。在以上计算的基础上,经考察现场试爆效果,并考虑布药方便,将预裂孔平均线装药量确定为:一般地段q线=500g/m;强风化岩体q线=400g/m。(4)孔底线装药量qd线、孔口线装药量qc线根据众多预裂爆破实践经验,要使预裂缝贯穿质量好,阻震效果佳,在预裂炮孔底部一定范围内应加大装药量。本工程由于预裂炮孔深,底部夹制力大,所以将孔底2m范围内的线装药量增大一倍,即
17、qd线=1000g/m。同样,为避免预裂爆破形成爆破漏斗,减小孔口处围岩破坏,孔口堵塞段以下2米段的线装药量减小一半,即qc线=250g/m。(5)不偶合系数m工程实践表明,在预裂爆破炮孔直径d =(60200)mm 情况下,不偶合系数m 超过24 为宜。m=d/de式中,de为预裂孔装药直径,本工程预裂孔装药采用32mm卷状岩石乳化炸药,所以其不偶合系数为m=3.125。(6)预裂孔与主爆区炮孔距离预裂爆破预裂孔首先起爆,形成预裂面,如果主爆孔离预裂孔太近,主爆孔产生的应力波可能使预裂区破损、破裂,达不到预裂目的;如果主爆孔离预裂孔太远,主爆孔爆破后可能使主爆孔与预裂孔间的岩石不能充分破坏,
18、会产生根底。合理距离取决于主爆孔的破坏半径,约为1.31.5倍,根据应力波理论,对于石灰岩(f为8以上),2#岩石炸药,可计算主爆孔破坏半径为:r=0.98m1m。主爆孔与预裂孔距离则为1.31.5m。本工程预裂孔起爆技术遵循以下原则:一是预裂孔间的起爆时差应尽可能小,以延长相临预裂孔爆炸应力波动态应力场和爆炸气体准静应力场叠加的时间;二预裂孔间的贯通裂缝应在相邻主爆孔爆炸前,根据工程经验,预裂孔的起爆时间必须比最近一排主爆孔的起爆时间超前100150毫秒以上。4.2.3 装药结构为减小预裂孔间起爆时差,保证孔内所有药卷爆轰效果,边坡预裂孔采用双导爆索并列、沿预裂孔轴向全长敷设、将32mm炸药
19、卷按设计计算值分配串绑于导爆索的装药结构,如图4-4预裂孔装药结构图。孔底2米长范围:qd线=1000g/m,Qd=2kg,需32mm岩石乳化炸药10卷,那么炸药首尾相接,组成连续柱状药柱,用胶布将其与并列双爆索段绑固;孔中间范围:q线=500g/m,每1米孔需32mm乳化炸药0.5kg,那么每卷炸药间隔20cm分别与导爆索绑捆;孔口堵塞段下2m长范围:qc线=250g/m,Qc=0.5kg,需用32mm乳化炸药2.5卷,将其分为5个半卷,在此段导爆索上每隔30cm捆绑上半卷药。为方便现场装药施工,并阻减爆炸冲击波对边坡围岩孔壁的作用,在炸药卷串双导爆索一侧垫铺一条竹片,具体实施装药时,将竹片
20、侧靠于边坡围岩侧,而使炸药卷朝向开挖侧。图5-4 预裂孔装药结构示意图4.2.4 起爆网路本工程施工工序:远离边坡的一侧主体岩石先进行中深孔爆破开挖,保留距边坡约6.5cm厚为缓冲层,布置3排主爆孔和一排沿边坡面的预裂孔,并同网起爆。预裂孔孔内双导爆索支线与地面一双股并列主爆导爆索并联搭接,主爆索由2发MS4段导爆管雷管引爆。3排主爆孔均实行孔内延期起爆,分别于孔内装入MS4、MS6、MS8段非电雷管。4排孔的导爆管组成同一非电起爆网路一次起爆,如图4-5预裂炮孔布置及起爆网路图。预裂孔2排孔1排孔Ms4孔内ms6孔内ms41.03.03.0图5-5 预裂炮孔布置及起爆网路示意图(单位:m)按
21、照上述起爆网路实施,边坡预裂孔及邻近3排主爆孔起爆时间如表5-2所示,预裂孔排起爆时间比最近的第3排主爆孔超前145205毫秒。表5-2 预裂孔与邻近炮孔起爆时差表炮孔名称起爆雷管段别起爆时间/ms起爆时差/ms1 排主爆孔MS475 102 排主爆孔MS6150 20+(45105)3 排主爆孔MS8250 20+(60140)边坡预裂孔MS475 10-(145205)图5-5是高速公路边坡预裂爆破布孔实际图,爆破效果达到预期目的。333331-1.2Ms11-1.21.8-27-8614-15Ms5Ms3导爆索 雷管 横断面图平面图单位:m 3-4导爆索 图5-6 边坡预裂爆破布孔示意图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 控制 爆破 施工
限制150内