七下数学各章节知识点总结.docx
《七下数学各章节知识点总结.docx》由会员分享,可在线阅读,更多相关《七下数学各章节知识点总结.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结一、整式:七下数学各章节学问点总结第一章 整式的运算单项式可编辑资料 - - - 欢迎下载精品名师归纳总结1 、单项式和多项式统称为整式。整式多项式(1)单项式有三种:单独的字母。单独的数字。数字与字母的乘积。单项式的系数是指单项式中的数字因数,比如的系数是,单独的一个非零数的次数是0,比如 -2 ,等。单项式的次数是全部字母的指数和,如次数是 8。留意:单项式中可以有分母,但分母中不能含字母。单项式的系数包括前面的符号。单项式的次数只与所含字母的指数有关。2 多项式:几个单项式的和叫做多项式。多项式的项:在多项式中,每个单项式的
2、项叫做多项式的项, 其中,不含有字母的项叫做常数项。多项式的次数:一个多项式中,次数最高的项的次数叫做多项式的次数。一个多项通常叫做“几次几项”,比如是三次三项式。多项式的特殊形式,比如等。用多项式表示多位数:两位数10a b,三位数 100a 10b c。2、整式的加减:整式的加减就是求几个整式的和或差的运算。整式的加减法的一般步骤:整式加减法的实质就是去括号后合并同类项。( 1)假如有括号,应先去括号。( 2)假如有同类项,再合并同类项。对于化简求值的题目,应当先化简,再代入求值。3、同底数幂的乘法:同底数幂相乘,底数不变,指数相加,即m 、n 都是正整数),推广应用( m、n、p 是正整
3、数) 留意 : 当两个幂的底数互为相反数时,可以转化为同底数的幂,适当变换符号。4、 幂的乘方与积的乘方:可编辑资料 - - - 欢迎下载精品名师归纳总结(1) 幂的乘方:底数不变,指数相乘,即m 、n 都是正整数)逆用,推广应用=(2) 积的乘方:,n 是正整数 例题:如, 求的值。5、同底数幂的除法:同底数幂相除,底数不变,指数相减,即a 不为 0, m,n 都为正整数,且 mn。逆用。留意:( 1)零指数幂:任何非零数的零次幂都等于1,即。(2)负整数指数幂:任何非零数的-p ( p 是正整数)次幂都等于这个数倒数的p 次幂,即, p 是正整数 。 有时也可写成的形式。6、整式的乘法:(
4、 1)单项式乘以单项式:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。单项式乘以单项式的结果仍是一个单项式。( 2)单项式乘以多项式:只要将单项式分别乘以多项式的各项,再将所得的积相加,即ma+b=ma+mb。单项式乘以多项式的理论依据是安排律。单项式乘以多项式的结果是一个多项式,其项数与多项式中的项数相同。( 3)多项式乘以多项式:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加,即 m+na+b=ma+mb+na+nb。7、平方差公式:,即两个数的和与两个数的差的乘积,等于这两个数的平方差。可以 逆用:。8、完全平方公式,即两个数的和(或差
5、)的平方和加上(或减去)它们乘积的2 倍,叫做完全平方公式。仍可以逆用:拓展应用:,9、整式的除法:可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)单项式除以单项式法就:单项式相除, 把系数、 同底数幂分别相除后, 作为商的因式。对于只在被除式里含有的字母,就连同它的指数一起作为商的一个因式。从运算的法就来看, 单项式除法的实质是有理数的除法与同底数幂的除法。( 2)多项式除以单项式法就:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。多项式除以单项式的实质是把多项式除以单项式转化为单项式除以单项式的运算。10、多项式除以单项式的法就:多项式除以单项式一般按下
6、面两步进行:(1 )用多项式的每一项除以单项式;( 2)把每一项除得的商相加。( 3 )对于混合运算的题目,解题时要先确定运算次序,然后依据公式和法就依次进行运算,不能急躁。可编辑资料 - - - 欢迎下载精品名师归纳总结其次章 平行线与相交线本章学问结构:1、互余与互补:(1) 假如两个角的和是直角,那么就称这两个角互余角。(2) 假如两个角的和是平角,那么就称这两个角互补角。(3) 余角、补角的性质:同角或等角的余角相等。同角或等角的补角相等。留意:互余与互补都是反映两个角的数量关系,而不是位置关系。(4) 邻补角是指这样的两个角:和是平角。在位置上,有一条公共边,而另外的两条边互为反向延
7、长线。2、对顶角:既要求位置关系,又要求数量关系。( 1)在两条直线相交所成的四个角中,不相邻的两个角是对顶角。( 2)假如两个角有公共顶点,并且它们的边互为反向延长线,那么这两个角叫做对顶角。( 3)对顶角的性质:对顶角相等。是由两条直线相交所成的对角。3、同位角、内错角、同旁内角:( 1)这三种角都是两条直线被第三条直线所截形成的角, 因此识别这三种角的关键是认清第三条直线。(2) 同位角 :两个角都在被截两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。(3) 内错角 :两个角都在被截两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。可编辑资料
8、- - - 欢迎下载精品名师归纳总结4 同旁内角 :两个角都在被截两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。4、两直线 平行的判定方法:除了定义之外( 1)同位角相等,两直线平行。( 2)内错角相等,两直线平行。( 3)同旁内角互补,两直线平行。( 4)在同一平面内,假如两条直线都平行于第三条直线,那么这两条直线平行。(简称为:平行于同始终线的两直线平行)( 5)在同一平面内,假如两条直线都垂直于第三条直线,那么这两条直线平行。(简称为:垂直于同始终线的两直线平行)5、两直线平行的性质:( 1)假如两条平行直线被第三条直线所截,那么同位角相等。简称: 两直线平行,同
9、位角相等。( 2)假如两条平行直线被第三条直线所截,那么内错角相等。简称: 两直线平行,内错角相等。( 3)假如两条平行直线被第三条直线所截,那么同旁内角相等。简称: 两直线平行,同旁内角相等。留意:假如两条直线不平行,那么就不会有同位角、内错角、同旁内角相等。6、用尺规作线段和角:( 1)在几何中,只用没有刻度的直尺 和圆规作图称为 尺规作图 。用直尺画直线,不能使用刻度。用圆规作园(或作弧),或者截取肯定长度的线段。( 2)尺规作图是最基本、最常见的作图方法,通常叫基本作图。( 3)吃规作图:已知:依据文字语言用数学语言写出题目中的条件。求作:依据题目写出要求的图形及此图形应满意的条件。作
10、法:依据作图的过程写出每一步的操作过程,当不要求写作法时, 要保留作图痕迹。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结一、熟悉百万分之一这样小的数:第三章 生活中的数据可编辑资料 - - - 欢迎下载精品名师归纳总结1、百万分之一即,这样小的数可以用单位来估量,常用的单位有:微米、纳米,1 微米 =米=米, 1 纳米=米=米。2 、说明:( 1)百万分之一米又称为微米,即1 微米 =米。(2) 10 亿分之一米又称为纳米,即1 纳米=米。( 3) 1 微米 =纳米。(4) 1 米=10 分米 =100 厘米 =1000 毫米 =微米 =纳米
11、。面积单位: 1=1=质量单位: 1 吨=千克 =克。二、科学计数法:1 、一个确定值小于1 的数,用科学计数法可以表示为的形式,其中 a、n 的要求是( 1) 1 a10,即原数的小数点移到第一个不是零的数位的后面,就能得到 a。( 2)n 为负整数,其确定值是小数点移动的位数。2 、一个确定值较大的数, 用科学计数法表示为的形式, 其中 1 a10,n 为正整数。三、精确数与近似数:1 、精确数是指与实际完全符合的数。由此可以判定一个数是精确数仍是近似数,关键看它与实际是否完全相符。( 1)一般情形,测量的数量都是近似数。( 2)不要认为整数就是精确数,而分数和小数就是近似数。2 、近似数
12、的精确度:近似数的精确度是指接近精确数的程度,一个近似数,四舍五入到了哪一位,就称这个近似数精确到了哪一位。用四舍五入法取近似数时,要精确到哪一位, 就对这一位的下一位进行四舍五入,至于后面的数字不用考虑。可编辑资料 - - - 欢迎下载精品名师归纳总结留意: ( 1)“保留两位小数”、 “精确到小数点后其次位”、“精确到百分位”与“精确到 0.01 ”都是相同的意思。( 2)依据精确度而确定的近似数的末位数假如是0,不能省略。( 3 精确度是由该近似数的最终一位有效数字在该数中所处的位置打算的。即带有文字单位(比如万、千等)的近似数要仍原,看最终一个有效数字在哪一位上。假如是科学计数法表示的
13、近似数,也要仍原成一般的数。例如: 40.3 精确到位,有个有效数字,分别是3.20万精确到位,有个有效数字,分别是精确到位,有个有效数字,分别是四、有效数字:有效数字的定义:对于一个近似数,从左边第一个不是0 的数字起,到精确到的数位为止,全部的数字都是这个数的有效数字。确定近似数中的有效数字有三种情形:( 2)( 3)对于用科学计数法表示的近似数,由( 1 a10)中的 a 来确定, a 的有效数字就是这个近似数的有效数字,而与无关。五、统计图和统计表:用于表示数据的方式1、条形统计图:能清晰的表示出每个项目的详细数目。2、折线统计图:能清晰的反映事物的变化趋势。3、扇形统计图:能清晰的表
14、示出各部分占总体的百分比。4、象形统计图:能直观的反映数据之间的意义。5、制作象形统计图的要求:要使每个象形图能代表每一个数据,写明标题,注明图形所代表的数目和单位可编辑资料 - - - 欢迎下载精品名师归纳总结第四章 概率本章学问结构 :概率一、大事发生的可能性大小:1 、大事分为必定大事、不行能大事和不确定大事。2 、必定大事:事先就能确定肯定会发生的大事。也就是指该大事每次肯定发生,不行能不发生,即发生的可能是100%(或 1)。3 、不行能大事:事先就能确定肯定不会发生的大事。也就是指该大事每次完全不会发生,即发生的可能性为0。4 、不确定大事:事先无法确定会不会发生的大事。也就是说该
15、大事可能发生,也可能不会发生,即发生的可能性在0 和 1 之间。越接近于 1,发生的可能性越大。二、等可能性是指几种大事发生的可能性相等:1 、等可能大事:在一次试验中,假如不确定现象的可能结果只有有限个,并且每一种结果都是等可能的,求这种类型大事的概率叫做等可能大事的概率型。比如摸球、掷硬币、掷骰子等。2 、概率 是用来反映大事发生的可能性大小的量,它是一个比例数,一般用P 来表示,比如在等可能大事中,大事A 发生的概率是( 1)必定大事发生的概率为1,记作 P(必定大事) =1。( 2)不行能大事发生的概率为0,记作 P(不行能大事) =0。可编辑资料 - - - 欢迎下载精品名师归纳总结
16、( 3)不确定大事发生的概率在0 1 之间,记作 0P(不确定大事) 1。3、概率的运算:( 1) 直接数数法 :即直接数出全部可能显现的结果的总数n,再数出大事 A 可能显现的结果数 m,利用概率公式直接运算出大事 A 的概率。( 2)对于较复杂的题目,我们可采纳“列表法 ”或画“ 树状图法 ”来分析。4、区域大事发生的概率:(1) 在区域大事中,某个大事发生(用A 表示)的概率等于这一大事发生的可能结果所组成的图形的面积(用表示)除以全部可能结果组成图形的面积(用表示),所以该事件的概率可以表示为全,这是由于大事发生在每个单位面积上的概率是相同的。(2) 求区域大事的概率:( 1)第一分析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七下数学各章节知识点总结 数学 各章 知识点 总结
限制150内