二次函数对称轴与区间的关系分析.docx
《二次函数对称轴与区间的关系分析.docx》由会员分享,可在线阅读,更多相关《二次函数对称轴与区间的关系分析.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -精品办公文档二次函数对称轴与区间的关系分析( 1)轴定,区间定方法:可以对其二次函数配方处理或者是结合二次函数图形求解,可编辑资料 - - - 欢迎下载精品名师归纳总结例 1 如实数x, y 满意 2x 26xy 20 , 就 x2y 22x的最大值是.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结解:由 y26x2x2 得 6 xx22 x2y202 xx26 x2 x22 x8 xx2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - -
2、- 欢迎下载精品名师归纳总结问题转化为求f x8xx2 ,当 x0,3中的最大值,易的f x maxf 315.可编辑资料 - - - 欢迎下载精品名师归纳总结设计意图: 利用消元思想将问题简化, 但是其中必需留意的是消元之后的自变量的取值范畴,进而转化为二次函数在闭区间上的最值。设计意图 :结合韦达定理转化成为有关m 的二次函数, 但是其中的隐含条件:二次方程有实根,从而确定m 的取值范畴。( 2)轴定,区间变方法:结合二次函数的图象,争论对称轴与区间的相对位置关系:轴在区间右边轴在区间左边轴在区间内可编辑资料 - - - 欢迎下载精品名师归纳总结例 2 已知f xx22x2 在 xt ,t
3、1 上的最大、最小值分别为M t 、mt ,可编辑资料 - - - 欢迎下载精品名师归纳总结求 M t 、mt 的解析式 .活动:师生一起合作求解函数的最小值mt 的表达式,并作小结,再让学可编辑资料 - - - 欢迎下载精品名师归纳总结生板书求解函数的最大值M t 的表达式,和下面例题4 的最小值gt 的表达式可编辑资料 - - - 欢迎下载精品名师归纳总结设计意图 :( 1)通过讲解让同学体会解题过程中留意分哪几类争论,做到不遗漏不重复, 同时怎样结合图像求解函数的最值,并且引导同学留意解题的规范性( 2)同学求解例3 函数中最大值的表达式中争论轴在区间内的可能遇到阻 碍,讲解过程中启示同
4、学结合函数的图像和性质:假如我们俩个自变量的值到对称轴的距离相等, 就我们的函数值也相等, 离对称轴的距离越远, 我们的函数值越大的性质来求解函数的最大值的表达式( 3)依据物理中动、静(定)的相对原理,那么例题4 的轴变区间定的题型可以类比成轴定区间动的这种题型求解,培育同学的发散思维和类比才能可编辑资料 - - - 欢迎下载精品名师归纳总结解:对称轴为x种情形):1 ,分 4 种情形争论(另解:最大值可以分2 种情形,最小值可以分3可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(1) t11,即 t0 时,M t f tt 2 - 2t2、
5、mtf t1t 21可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(2) t1 时, M t f t1t 21、mt 1f tt 2 - 2t2可编辑资料 - - - 欢迎下载精品名师归纳总结(3) 0t1,且1- tt1-1 ,即22t1 时,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结M t f t1t1、mtf 11可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 1 页,共 4
6、页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -精品办公文档可编辑资料 - - - 欢迎下载精品名师归纳总结(4) 0t1,且1- tt1-1 ,即 1t1 时,2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结M t f t t 22t2、mt f 11可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结综上,M tt 22tt 21t2t1 21 t 22, mt 10t 21t t
7、2t012t1可编辑资料 - - - 欢迎下载精品名师归纳总结(3)轴变,区间定 方法:与情形 2 一样.可编辑资料 - - - 欢迎下载精品名师归纳总结例 4 已知f xx22tx2 在 x 0,1上的最小值为g t ,求g t 的解析式 .可编辑资料 - - - 欢迎下载精品名师归纳总结解:对称轴xt ,分三种情形争论可编辑资料 - - - 欢迎下载精品名师归纳总结(1) t0 时,g tf 00可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(2) 0t1 时,gt f t 2t 2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料
8、 - - - 欢迎下载精品名师归纳总结(3) 1t 时,g t f 132t可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结综上,2tg t 20t2 0t1可编辑资料 - - - 欢迎下载精品名师归纳总结32t t1可编辑资料 - - - 欢迎下载精品名师归纳总结例 5 设f xx2ax3 ,当 x2,2时恒有f xa ,求 a 的范畴 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结变式一:如将f xa 改为f xa 时,其它条件不变,求a 的范畴可编辑资料 - - - 欢迎下载精品名师归纳总
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数对称轴与区间的关系分析 二次 函数 对称轴 区间 关系 分析
限制150内