高中数学课时作业----必修 .docx
《高中数学课时作业----必修 .docx》由会员分享,可在线阅读,更多相关《高中数学课时作业----必修 .docx(65页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品名师归纳总结目录第一章三角函数课时 1任意角1课时 2弧度制3课时 3任意角的三角函数1 5课时 4任意角的三角函数2 7课时 5同角三角函数的基本关系9习题课 111课时 6三角函数的诱导公式113课时 7三角函数的诱导公式215课时 8正弦、余弦函数的图象17课时 9三角函数的周期性19课时 10正弦函数、余弦函数的图象与性质121课时 11正弦函数、余弦函数的图象与性质223课时 12正切函数的性质与图象25课时 13函数 y=Asinwx+的图象 1 27课时 14函数 y=Asinwx- 的图象 229习题课 231课时 15 三角函数模型的简洁应用133课时 16 三角函数模型
2、的简洁应用235课时 17 本章复习37其次章 平面对量课时 10 平面对量数量积的坐标表示、模、夹角1 59课时 11 平面对量数量积的坐标表示、模、夹角2 61习题课 463课时 12 平面对量应用举例65课时 13 本章复习67第三章 三角恒等变换课时 1 两角和与差的余弦69课时 2 两角和与差的正弦、余弦1 71课时 3 两角和与差的正弦、余弦2 73课时 4 两角和与差的正切1 75课时 5 两角和与差的正切2 77课时 6 帮助角公式79课时 1平面对量的实际背景及基本概念39课时 2向量加法运算及其几何意义41课时 3向量减法运算及其几何意义43课时 4向量数乘运算及其几何意义
3、45课时 5向量共线定理47课时 6平面对量基本定理49习题课351课时 7平面对量的坐标表示及坐标运算1 53课时 8平面对量的坐标表示及坐标运算2 55课时 9平面对量的数量积57可编辑资料 - - - 欢迎下载精品名师归纳总结课时 7二倍角的正弦、余弦、正切公式1 81课时 8二倍角的正弦、余弦、正切公式2 83习题课 585课时 9 简洁的三角恒等变换87课时 10 本章复习89附:第一章检测卷其次章检测卷第三章检测卷模块测试卷 1模块测试卷 2参考答案与点拨 第一章三角函数课时 1任 意 角1. 以下有四个命题:小于90的角是锐角。第一象限的角肯定不是负角。锐角 是第一象限的角。其次
4、象限的角必大于第一象限的角其中,正确命题的个数是A 0 个B 1 个 C2 个D 3 个2. 假设角 2a 与 140。的终边相同,就a ,3. 与 -1215角的终边相同且肯定值最小的角是 4在“ 145, 510, -390 , -880”这四个角中, 其次象限角是请填写正确的序号5. 假设将时钟拨慢30 分钟,就时针转了 ,分针转了6. 在直角坐标系中,假设角与角的终边相互垂直,那么与的关系式为7. 在 O到 360范畴内,找出与以下各角终边相同的角,并指出它们是第几象限角:可编辑资料 - - - 欢迎下载精品名师归纳总结1440 ;21410 ;3 - 46410可编辑资料 - - -
5、 欢迎下载精品名师归纳总结8. 写出与以下各角终边相同的角的集合,并把集合中适合不等式-360 360的元素写出来:1 30。2-15 9. 已知是第三象限角,请问180 -是第几象限角?10. 在图 1-1-1 所示的平面直角坐标内分别画出在以下范畴内的角:1k 360 -30 xk 360 75 k Z;2k 360 -135 xk 360 135 kZ 11. 假设角的终边与168角的终边相同,求在0 , 360内终边与角的终边3相同的角可编辑资料 - - - 欢迎下载精品名师归纳总结12. 已知角是其次象限角,试确定2、a 所在的象限2可编辑资料 - - - 欢迎下载精品名师归纳总结1
6、3. 写出终边在y 轴上的角的集合。终边在x 轴上的角的集合,可编辑资料 - - - 欢迎下载精品名师归纳总结课时 2弧 度 制31. 假设角 a -2,-2,就角终边所在象限是 可编辑资料 - - - 欢迎下载精品名师归纳总结2. 假设扇形的圆心角是2rad,它所对的弧长为4cm,就这个扇形的面积是 可编辑资料 - - - 欢迎下载精品名师归纳总结333. 与 -433终边相同的最小正角是。与4终边相同且肯定值最小的角是 可编辑资料 - - - 欢迎下载精品名师归纳总结4. 三角形的三个内角大小之比为2:5:8 ,就各角的弧度数是 可编辑资料 - - - 欢迎下载精品名师归纳总结k5. 已知
7、 A=x x=+2关系是 , k Z, B=x x=k4, k Z,就集合 A 与集合 B 的4可编辑资料 - - - 欢迎下载精品名师归纳总结6. 假设将时钟拨慢10 分钟,就分针转过的弧度数为 7. 将以下各角化成2k 0 2 , k Z的形式,并指出角的终边所在的象可编辑资料 - - - 欢迎下载精品名师归纳总结限:1 21423。21590 。32可编辑资料 - - - 欢迎下载精品名师归纳总结8假设 =4,就是第几象限角?9. 已知扇形的周长是5cm,面积是 1cm2,求扇形圆心角的弧度数10. 如图 1-2-1 所示,写出终边在以下阴影部分内的角的集合用弧度制11. 已知一扇形的周
8、长为40cm,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?可编辑资料 - - - 欢迎下载精品名师归纳总结612. 假设角的终边与7角角的终边相同,求在0 ,2内终边与角的终边相同的3可编辑资料 - - - 欢迎下载精品名师归纳总结课时 3任意角的三角函数11. 点 P 从1,0动身,沿单位圆 x2y 2=1 逆时针方向运动 23弧长到达 Q 点,就 Q 的可编辑资料 - - - 欢迎下载精品名师归纳总结坐标为 1A -,3 B3, - 1 C- 1, -33 1D可编辑资料 - - - 欢迎下载精品名师归纳总结222222222. 已知角的终边经过点P12, 5 0,
9、就 sina3. 已知是第三象限角,且cos 2 ,就 2 的终边所在象限是 可编辑资料 - - - 欢迎下载精品名师归纳总结2279可编辑资料 - - - 欢迎下载精品名师归纳总结4. 化简 acos 2b sinab cos3ab sin结果为可编辑资料 - - - 欢迎下载精品名师归纳总结22可编辑资料 - - - 欢迎下载精品名师归纳总结5. 函数 ysin x| cos x |tan x的值域是可编辑资料 - - - 欢迎下载精品名师归纳总结| sin x |cos x| tan x |2可编辑资料 - - - 欢迎下载精品名师归纳总结6. 已知角的终边过点P ,1 3,且cos a
10、5 ,就 =5可编辑资料 - - - 欢迎下载精品名师归纳总结7. 已知角的终边上一点P 到 x 轴、 y 轴的距离之比为 4: 3,且 COS 0,求 COS - sin的值8. 角的终边上一点P4t, -3tt 0,求 2sin COS的值9. 已知角的终边在直线y3x上,求 sin的值10. 判定以下各式的符号:可编辑资料 - - - 欢迎下载精品名师归纳总结192571 cos. sin. tan。 2 sin 3 . cos 4 . tan 5 可编辑资料 - - - 欢迎下载精品名师归纳总结631211. 已知是第三象限角,试判定sincos cossin 的符号 12假设角的终边
11、与直线y 3x 重合且sina0 ,又 Pm, n是终边上一点,且| OP |10 ,求 m-n 的值课时 4任意角的三角函数21. 在 ABC, 中,假设 cosA tanBsinC1可编辑资料 - - - 欢迎下载精品名师归纳总结22可编辑资料 - - - 欢迎下载精品名师归纳总结10. 已知 sin sin, cos cos, 且 sin cos 0,判定点 Ptan, sin在第几象限?可编辑资料 - - - 欢迎下载精品名师归纳总结11. 求函数 y12cos xlg2sin x1 的定义域可编辑资料 - - - 欢迎下载精品名师归纳总结12. 求以下三角函数值35sin 4cost
12、an 3sincos522课时 5同角三角函数的基本关系3可编辑资料 - - - 欢迎下载精品名师归纳总结1. 已知cosa,0,那么tan =5可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2. 已知sin a5 ,就 sin4 cos4的值为5可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3. 假设是其次象限角,就化简tana .1sin2 a1 可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结4假设 180 360,就化简11cosa1cos
13、acos1cosa 1cosa可编辑资料 - - - 欢迎下载精品名师归纳总结5. 假设sincos,就 tan21sin的值是 可编辑资料 - - - 欢迎下载精品名师归纳总结6. 已知cosa sin a,8a,那么 cos sin =41可编辑资料 - - - 欢迎下载精品名师归纳总结7. 已知sin a4,并且角是第四象限角,分别求cos,tan的值5可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结8化简: 11sin 2 40 。2112sin10 cos10 sin101sin 2 10可编辑资料 - - - 欢迎下载精品名师归纳总结
14、9. 已知sin acosa,且 0, 求: 1 sin cos ;2sin cos;35可编辑资料 - - - 欢迎下载精品名师归纳总结sin3 cos312sin10. 证明 :x cos x1tan x 可编辑资料 - - - 欢迎下载精品名师归纳总结2cos2 xsin 2 x1tan x可编辑资料 - - - 欢迎下载精品名师归纳总结tan a11. 已知tan a61 ,求以下各式的值:1 sina3sin cos 4cos2 。可编辑资料 - - - 欢迎下载精品名师归纳总结22cos a3sin a可编辑资料 - - - 欢迎下载精品名师归纳总结3cos a4sin a12已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学课时作业-必修 高中数学 课时 作业 必修
限制150内