两相厌氧处理高浓度含硫有机废水改造设计.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《两相厌氧处理高浓度含硫有机废水改造设计.doc》由会员分享,可在线阅读,更多相关《两相厌氧处理高浓度含硫有机废水改造设计.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流两相厌氧处理高浓度含硫有机废水改造设计.精品文档.两相厌氧处理高浓度含硫有机废水改造设计概况江西某生化有限公司以生产赤霉素为主,该公司在生产过程中产生的废水主要来自提炼的溶媒萃取余液和板框过滤、超纳滤膜的洗涤废液。其主要的污染物及指标见表1。1.jpg (58.54 KB)2009-9-29 21:57根据废水出水水质要求,出水需达到污水综合排放标准(GB8978-1996)二级标准。排放指标见表2。2.jpg (16.71 KB)2009-9-29 21:572原工艺分析2.1原处理工艺流程该公司原废水处理工艺采用化学混凝和生物处理联合工艺
2、。其主要构筑物有:中和池、沉淀池、调节池、加药池、混凝池、气浮池、水解酸化池、UASB、SBR、生物接触氧化、斜板沉淀池。其工艺流程如图1所示。3.jpg (29.91 KB)2009-9-29 21:572.2原工艺存在的问题及原因分析原工艺在运行过程中COD、BOD5长期不能达标,其主要影响因素是高浓度的硫酸根离子抑制后续生物处理过程。原工艺中化学混凝的作用主要是去除硫酸根离子,但在高浓度的有机废水环境中,混凝的效果很差,使硫酸根离子的去除没有达到预期的效果,从而严重抑制了后续生物处理过程。原工艺存在的问题还有以下三方面。(1)原工艺中的SBR采用人工控制,自动化程度太低。(2)设备腐蚀现
3、象非常严重。(3)化学混凝需要投加的药品较多,运行费用高。3工艺改进与设计新工艺采用生物法,利用硫酸盐还原菌(SRB)去除硫酸根离子。新工艺最大限度地利用和改造了原有处理设施,并增加了处理硫酸根离子的两相厌氧工艺。其主要工艺流程见图2。4.jpg (32.75 KB)2009-9-29 21:573.1污水部分萃取废液中含有高浓度的硫酸根离子,抑制后续的生物处理过程。本工艺采用两相厌氧法,利用硫酸盐还原菌将硫酸根离子还原成H2S,去除高浓度硫酸根离子对后续处理的影响。在厌氧条件下,硫酸盐还原菌(SRB)在反应器UASB1中将大部分的硫酸根还原成H2S。生成的H2S大部分溶解在水中进入微氧池后在
4、氧化池内被氧化成为单质S,在加入混凝剂后在竖流式沉淀池中沉淀分离。综合废水与经过预处理的萃取废水在调节池2中充分混合后进入后续的常规处理单元,经过UASB2,A/O池,竖流式沉淀池,生物接触氧化池,斜板沉淀池后达标排放。3.2污泥部分整个系统的污泥主要来自三个沉淀池,两个UASB反应器和IC反应器。污泥进入污泥浓缩池后加入适量的药剂进行重力浓缩,后进入好氧消化池消化,消化后的污泥泵入板框压滤机进行脱水处理,脱水污泥外运填埋。污泥浓缩池上清液及压滤机滤液返回调节池2。3.3曝气部分曝气部分主要有微氧曝气池,A/O池的好氧段,生物接触氧化池,和污泥好氧消化池。3.4加药部分萃余液中的pH值为23,
5、在中和池中加NaOH溶液第一次中和,在进入UASB1前再次加NaOH溶液第二次中和,控制pH值在67之间,以利于硫酸盐还原菌的生长。经过预处理的萃取废水与综合废水混合时,在调节池2将混合废水的pH值在6.87.2之间以利于UASB2中甲烷菌的生长。NaOH溶液的投加均采用在线自动控制。经过微氧曝气池后的出水进入加药池,在加药池中加入适量的PAC和PAM,生成的S单质在竖流式沉淀池中充分去除。污泥浓缩池中也需要加入适量的PAC和PAM,以利于污泥浓缩和脱水。4新工艺设计要点4.1构筑物尺寸(见表3)5.jpg (140.92 KB)2009-9-29 21:574.2新建主要构筑物设计参数(1)
6、UASB1UASB1是该工艺的主体设备,主要使SO2-4在硫酸盐还原菌的作用下还原成H2S。其规格为:3.75m615m,池容72m3。水利停留时间为6小时。硫酸盐负荷:5kg/m3d。(2)微氧曝气池规格为:4.8m4.8m。主要作用是将生成的H2S氧化成S单质从而在后续竖流式沉淀池中分离。曝气强度:012m3/min。(3)竖流式沉淀池规格:2.5m3.5m,泥斗高115m,池容22m3。混凝沉淀去除单质S和SS。中心管直径400mm,水流流速0103m/s。上升流速:010008m/s。(4)IC反应器4-5池容106m3。COD负荷:25kg/m3d。(5)UASB2(2座)COD负荷
7、:9kg/m3d,停留时间:6小时。4.3旧构筑物相关参数(1)A/O池A段停留时间12h;O段停留时间8h;COD负荷:2kg/m3d。气水比8:1。(2)生物接触氧化池停留时间1.2h;COD负荷:2kg/m3d;气水比10:1。5运行成本(1)电费:总装机容量10018kW,每天电耗2420kW,运行系数018,电费按016元/(kWh)计,电费为1160元/天。(2)药剂费:每天需PAC、PAM、NaOH的费用约为300元/天。(3)人工费:处理站调试完成后,自控运行,由3人轮流值班计150元/天。(4)折旧费:(30090%010481104)/365=35518元/天。(5)管理维
8、修费:3551830%=10617元/天。(6)总运行成本:不计折旧和维修,合计运行费用为1610元/天,折合单位废水为119元/m3;计折旧和维修,合计运行费用为2073元/天,折合单位废水为2144元/m3。结论(1)两相厌氧工艺成功地实现了产酸相与产气相的分离,将硫酸盐还原作用控制在产酸阶段完成,然后利用微氧池将生成的H2S分离,从而实现了生物脱硫的过程。解决了高浓度硫酸根离子对后续生物处理过程的影响。(2)硫酸根离子经过处理后,最终主要以S单质的形式在微氧曝气池后的竖流式沉淀池中沉淀下来,减少了H2S气体的产生,有利于大气环境,且可以减轻对设备的腐蚀作用。(3)生物脱硫技术成功地解决了
9、在高浓度有机废水环境下,化学混凝对硫酸根离子去除效果较差的问题。(4)生物脱硫工艺所需要的药剂费比化学混凝法大大减低,节省了运行成本。(5)新工艺中两相厌氧工艺采用了UASB和IC反应器,具有处理负荷高,处理效果好,占地面积小,运行管理简单等优点。经过处理后的废水完全可以达到污水综合排放标准(GB897821996)二级排放标准。在处理该类型废水中有较强的竞争优势。生物法处理含硫酸盐酸性废水及回收单质硫工艺前言化工、制药、金属加工和采矿等工业部门排出的废水中以及用某些固体脱硫剂去除烟气中 SO2时固体脱硫剂再生废液中都含有高浓度的硫酸盐。特别是硫化系矿山在开采过程中所含的硫化物被氧化为硫酸而产
10、生的酸性矿山废水中含有高浓度的硫酸盐。我国北方酸性矿井水主要分布在陕、宁、鲁和内蒙等省区。我国南方煤矿大部分为高硫煤,特别是川、贵、桂等省区,矿井水多呈酸性,pH值最低至2.53.0,其硫酸盐含量高达3000mg/L。含硫酸盐酸性废水不经处理直接排入水体使受纳水体酸化,降低pH,危害水生生物,并产生潜在腐蚀性。含硫酸盐酸性废水也会破坏土壤结构,减少农作物产量。酸性矿山废水的污染是一个全球性问题,因此酸性矿山废水处理受到国内外学者的广泛关注。目前,国内外处理酸性矿山废水主要采用石灰石或石灰作中和剂的中和法处理。该法的严重缺点是中和产生巨量难以处置的固体废弃物硫酸钙(石膏),产生严重的二次污染。湿
11、地法是国内外近年来研究的一种新处理工艺。但由于湿地法占地面积大,处理程度受环境影响很大,而且由于残余硫化氢从土壤中逸出污染大气环境,因此湿地法在应用上有很大的局限性。由于中和法和湿地法的明显缺陷和局限,利用自然界硫循环原理的生物法处理酸性矿山废水技术就成为研究的前沿课题。生物法处理酸性矿山废水的基本原理就是在厌氧条件下利用硫酸盐还原菌(Sulfate Reduction Bacteria, SRB)使SO42-还原为H2S,再用化学法或生物法将H2S氧化为单质硫,进而从水中回收紧缺物资单质硫。由于单质硫的回收,使处理本身产生环境社会效益的同时又具有一定的经济效益。只有当存在电子供体时SRB才能
12、将SO42-还原为H2S。酸性矿山废水中有机物含量通常很低,所以利用SRB还原SO42-的关键是选择技术可行、经济合理的碳源物质。一些学者曾采用过多种碳源对SRB还原SO42-进行了研究,这些碳源物质有乙酸、糖蜜、乙醇、发生炉煤气、H2/CO/CO2混合气体、初沉池污泥、剩余活性污泥、橡胶废水以及经过气提的乳清废水。上述碳源或由于成本高或由于SO42-还原能力低,限制了生产上的应用。生活垃圾来源充足方便,生活垃圾酸性发酵成本低廉,发酵产物挥发脂肪酸浓度高,因此生活垃圾酸性发酵产物有可能成为利用SRB生物处理含SO42-废水的经济合理的碳源,使生物处理含SO42-酸性废水工艺经济可行。用垃圾酸性
13、发酵产物作SRB碳源还原SO42-处理含SO42-酸性废水国内外尚未见其他人的有关报道。课题组通过三年的实验室研究提出了以生活垃圾酸性发酵产物为硫酸盐还原菌碳源的生物法处理含硫酸盐酸性废水及单质硫回收工艺路线。其工艺流程如图1。以生活垃圾酸性发酵产物为硫酸盐还原菌碳源生物法处理含硫酸盐酸性废水及单质硫回收的研究分为四个部分: (1)生活垃圾酸性发酵的产酸特性研究;(2)以生活垃圾酸性发酵产物为碳源,利用硫酸盐还原菌处理含硫酸盐酸性废水的研究;(3)利用无色硫细菌生物氧化硫化物生成单质硫的研究;(4)无色硫细菌生物氧化硫化物出水中单质硫的回收。 现将四个部分的研究结果总结如下:1生活垃圾的产酸发
14、酵1.jpg (48.28 KB)2009-9-29 22:04对于垃圾的厌氧产酸发酵,研究报道很少。研究者多是关注垃圾厌氧发酵过程中产酸阶段结束时挥发有机酸的浓度及由产酸阶段进入产甲烷阶段中间存在的停滞期的长短。研究生活垃圾酸性发酵的特点,目的是为SRB处理含硫酸盐酸性废水寻找一种新的经济碳源。试验中取太原理工大学北区生活垃圾进行酸性发酵研究。其成分为塑料4.6%,纸张7 .6%,无机成分7.8%,易于生物分解的厨房垃圾80.0%。采用手工分拣、粉碎的厨房垃圾作酸性发酵原料,其粉碎粒度为0.51.0cm。经测定,试验所用生活垃圾含水率为67.4% ,挥发性固体含量为29.6%。一次投料批量运
15、行小试研究结果表明:生活垃圾产酸发酵可以在较低的pH值(4.354.45)和较高的氧化还原电位( 200 340mV)下进行。酸性发酵最佳固体浓度为15%。采用无回流CSTR反应器进行生活垃圾产酸发酵时,进料固体浓度为15%,最佳HRT为30d。连续126d稳定运行结果表明,反应器中VFA浓度稳定在18g/L左右,VFA产率为0 .361gVFA/(Ld)或22.54gVFA/(kg垃圾d)。2以生活垃圾酸性发酵产物为碳源,利用SRB还原硫酸盐在温度为35时,利用以陶粒为填料的上向流厌氧滤池研究了以生活垃圾中温发酵产物为碳源生物还原SO42-的影响因素和反应器的还原能力。研究结果表明:通过反应
16、器出水回流可以防止SO42-还原产物H2S对SRB的抑制作用并可以提高进入反应器酸性废水的pH值,最佳回流比为501。作为SRB碳源的VFA投加量用投加VFA后废水的COD控制。废水中VFA最佳投量的大小既要保证SRB还原SO42-时有充足的碳源(大于按生化反应计算的理论值),又要尽量减少SO42-还原后废水中残留的COD值。对不同VFA投加量的试验结果表明,最佳COD/SO42-值约为1.12。在最佳回流比和最佳COD/SO42-值条件下,HRT12h时,经过SRB厌氧生物处理后,进水中SO42-浓度从2000mg/L还原为265.2mg/L,即反应器进水SO42-负荷为4.0gSO42-/
17、(Ld)时,反应器的SO42-容积还原能力达3.47gSO42-/(Ld),SO42-的比还原能力达0.40gSO42-/(gVSSd),SO42-的还原率为86.73%。理论上SRB每还原1gSO42-产生1.04g碱度,因此酸性废水可以不经中和直接进入反应器。当进水pH值由5.5以上逐渐降低至4.0时,SO42-的还原能力基本不变。此时,SO42-生物还原所产生的碱度可以中和进水中的酸度,使还原后出水pH7.0。当进水pH值为3.5时,由于出水回流对进水的中和作用,仍有84%的SO42-还原率,此时生物还原出水pH略大于或等于7.0。当进水pH为2.5时,生物还原出水pH为6.3。3利用无
18、色硫细菌(CSB)生物氧化硫化物生成单质硫SRB还原SO42-的产物H2S仍然是废水中的污染物,而且在合适的条件下又能被氧化为SO42-,所以必须将SRB生物还原出水中的H2S氧化为单质硫。研究中采用陶粒为填料的CSB生物膜反应器将硫化物生物氧化为单质硫。研究结果表明:CSB对pH值的最高忍耐值为9.1。当硫化物负荷一定时,单质硫的转化率与溶解氧浓度有关。在每种硫化物负荷下,当单质硫的转化率最高时,尾气中硫化氢含量随硫化物负荷的增加而增加。综合考虑硫化物的去除率和单质硫的转化率两个因素,得出试验的最佳运行工况是:硫化物负荷为5.0kg/(m3d),进水与进气同向,DO为1.95mg/L时,硫化
19、物去除率高达98%,单质硫的转化率为84.5%,尾气中未检测出硫化氢。4CSB生物氧化反应器出水中单质硫的回收H2S经CSB生物氧化产生的单质硫颗粒系由微生物体内排出的微小颗粒,在水中呈胶体状态,难以自然沉淀。悬浮于水中的单质硫颗粒虽然可以通过混凝沉淀的方法加以富集,但是由于混凝剂将单质硫颗粒紧密地包裹起来,无法用萃取的方法来回收混凝沉淀下来的单质硫。研究中采用慢砂滤池过滤方法对CSB生物氧化硫化氢出水进行固液分离。当慢砂滤池的滤速分别为0.14m/h,0.18m/h,0.23m/h和0.27m/h时,慢砂滤池对单质硫的截留能力分别为445g/(m2d)、572g/(m2d)、712g/(m2
20、d)和839g/(m2d)。慢砂滤池的过滤周期用水头损失控制,分别为25d,17d,11d和8d。过滤周期终了时将截留单质硫颗粒的慢砂滤池表面56cm厚的砂层刮下,用二硫化碳对砂和单质硫混合物进行萃取、蒸馏,可以回收纯度较高的单质硫。刮下的砂滤料可以在慢砂滤池中重复使用。研究表明,采用慢滤池过滤刮砂萃取蒸馏的工艺可有效地回收单质硫,CSB生物氧化反应器出水的单质硫回收率在76.1%80.0%之间(出水中微生物体内的单质硫无法用萃取方法回收)。5结论由于生活垃圾来源充足方便,生活垃圾酸性发酵成本低廉,产酸浓度高,酸性发酵产物可以作为SRB生物处理含SO42-废水的经济合理碳源,有利于降低生物处理
21、含SO42-酸性废水的费用。而且由于单质硫回收,使酸性废水处理本身产生环境社会效益的同时又具有一定的经济效益。所研究的工艺流程可以将酸性废水中58.5%的SO42-S以单质硫形式加以回收。粉煤灰微电解预处理含硫废水的研究摘要:粉煤灰是具有一定活性的含有6%炭的球状细小颗粒对于水中杂质具电解和吸附性能力,利用粉煤灰对工业废水进行处理可谓以废治废,且处理废水费用低效果好。这已得到有关科技界的广泛重视,在利用粉煤灰对废水处理方面已做了大量的研究工作,取得了可喜的成绩。研究了粉煤灰与铁屑构成微电池处理含硫废水的方法并探讨其作用机理。设计正交实验考查了在动态零回流小试中pH值、煤铁比和水力停留时间三因素
22、的影响,而且对反应时间和煤铁比作了单因素影响实验。对废水的进水浓度和回流比作了实验研究。实验结果表明,再pH值为8.00、煤铁比为1:水力停留时间为30min、进水浓度为15mg/l和回流比为5:1时处理效果最好,可达807%,排放浓度可以控制在2mg/l以内,达到国家三级排放标准。引言水中硫化物包括溶解性的H2S、HS-、S 2-,和存在于悬浮物中的可容性硫化物、酸可容性金属硫化物以及未电解的有机、无机类硫化物。硫化氢轻易从水中散逸于空气,产生臭味,且毒性很大。它可以与人体内细胞色素、氧化酶及该类物质中的二硫键作用,影响细胞氧化过程,造成细胞组织缺氧,危及人的生命。硫化氢除自身能腐蚀金属外,
23、还可以被污水中的微生物氧化成硫酸,进而腐蚀下水管道等。因此,硫化物是水体污染的一项重要指标。在工业生产过程中任何情况下都不可以向空气中排放硫化氢。使用这中气体的工作必须在密封的系统中或高效排风厨中进行。空气中如含有0.1%的H2S就会迅速引起头痛、晕眩等现象。吸入大量H2S就会造成昏迷或死亡。经常接触能引起慢性中毒,引起感觉变坏、消瘦、头痛等。工业上,空气中不得H2S含量不得超过0.01mg/L。第1章实验部分1实验器材PVC离子交换柱。离子交换柱的水泵2台。滤纸:酸洗并经过硬化处理、25ml或50ml酸式滴定管、锥形瓶、移液管、容量瓶。滤纸:酸洗并经过硬化处理、能阻留微细沉淀的致密无灰分滤纸
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两相 处理 浓度 有机 废水 改造 设计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内