中考数学专题目复习探索问题目.doc
《中考数学专题目复习探索问题目.doc》由会员分享,可在线阅读,更多相关《中考数学专题目复习探索问题目.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流中考数学专题目复习探索问题目.精品文档.中考数学专题复习5:探索性问题、综合问题精讲:探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目 探索型问题具有较强的综合性,因而解决此类问
2、题用到了所学过的整个初中数学知识经常用到的知识是:一元一次方程、平面直角坐标系、一次函数与二次函数解析式的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、相似三角形、解直角三角形等其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力、典型例题剖析【例1】(2005,临沂)如图261,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在轴上,CF交y轴于点B(0,2),且其面积为8(1)求此抛物线的解析式;
3、(2)如图262,若P点为抛物线上不同于A的一点,连结PB并延长交抛物线于点Q,过点P、Q分别作轴的垂线,垂足分别为S、R求证:PBPS;判断SBR的形状;试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由解:方法一:B点坐标为(0,2),OB2,矩形CDEF面积为8,CF=4.C点坐标为(一2,2)F点坐标为(2,2)。设抛物线的解析式为其过三点A(0,1),C(-22),F(2,2)。得 解得此抛物线的解析式为 方法二:B点坐标为(0,2),OB2,矩形CDEF面积为8, CF=4.C点坐标为(
4、一2,2)。 根据题意可设抛物线解析式为。其过点A(0,1)和C(-22) 解得此抛物线解析式为(2)解:过点B作BN,垂足为NP点在抛物线y=+l上可设P点坐标为PS,OBNS2,BN。PN=PSNS= 在RtPNB中PB2PBPS 根据同理可知BQQR。又 ,同理SBPB SBR为直角三角形 方法一:设,由知PSPBb,。假设存在点M且MS,别MR 。若使PSMMRQ,则有。即。 SR2M为SR的中点. 若使PSMQRM,则有。M点即为原点O。综上所述,当点M为SR的中点时PSMMRQ;当点M为原点时,PSMMRQ 方法二:若以P、S、M为顶点的三角形与以Q、M、R为顶点三角形相似,有PS
5、MMRQ和PSMQRM两种情况。 当PSMMRQ时SPMRMQ,SMPRQM 由直角三角形两锐角互余性质知PMS+QMR90。 取PQ中点为N连结MN则MNPQ= MN为直角梯形SRQP的中位线,点M为SR的中点 当PSMQRM时,。又,即M点与O点重合。点M为原点O。综上所述,当点M为SR的中点时,PSMMRQ;当点M为原点时,PSMQRM。 点拨:通过对图形的观察可以看出C、F是一对关于y轴的对称点,所以(1)的关键是求出其中一个点的坐标就可以应用三点式或 y=ax2+c型即可而对于点 P既然在抛物线上,所以就可以得到它的坐标为(a,a2+1)这样再过点B作BNPS得出的几何图形求出PB
6、、PS的大小最后一问的关键是要找出PSM与MRQ相似的条件【例2】探究规律:如图264所示,已知:直线mn,A、B为直线n上两点,C、P为直线m上两点 (1)请写出图264中,面积相等的各对三角形; (2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有_与ABC的面积相等理由是:_. 解决问题:如图 265所示,五边形 ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图266所示的形状,但承包土地与开垦荒地的分界小路(266中折线CDE)还保留着;张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地
7、面积与开垦的荒地面积一样多请你用有关的几何知识,按张大爷的要求设计出修路方案(不计分界小路与直路的占地面积) (1)写出设计方案并画出相应的图形; (2)说明方案设计理由解:探究规律:(l)ABC和ABP,AOC和 BOP、CPA和CPB (2)ABP;因为平行线间的距离相等,所以无论点P在m上移动到任何位置,总有ABP与ABC同底等高,因此,它们的面积总相等 解决问题:画法如图267所示 连接EC,过点D作DFEC,交CM于点F,连接EF,EF即为所求直路位置 设EF交CD于点H,由上面得到的结论可知: SECF=SECD,SHCF=SEDH,所以S五边形ABCDE=S五边形ABCFE,S五
8、边形EDCMN=S四边形EFMN 点拨:本题是探索规律题,因此在做题时要从前边问题中总结出规律,后边的问题要用前边的结论去一做,所以要连接EC,过D作DFEC,再运用同底等高的三角形的面积相等【例3】(2005,成都模拟,12分)如图268所示,已知抛物线的顶点为M(2,4),且过点A(1,5),连结AM交x轴于点B求这条抛物线的解析式;求点 B的坐标;设点P(x,y)是抛物线在x轴下方、顶点 M左方一段上的动点,连结 PO,以P为顶点、PQ为腰的等腰三角形的另一顶点Q在x轴上,过Q作x轴的垂线交直线AM于点R,连结PR设面 PQR的面积为S求S与x之间的函数解析式;在上述动点P(x,y)中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 复习 探索 题目
限制150内