中考数学专题目复习第二十五讲与圆有关的计算学生版.doc
《中考数学专题目复习第二十五讲与圆有关的计算学生版.doc》由会员分享,可在线阅读,更多相关《中考数学专题目复习第二十五讲与圆有关的计算学生版.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流中考数学专题目复习第二十五讲与圆有关的计算学生版.精品文档.2013年中考数学专题复习第二十五讲 与圆有关的计算【基础知识回顾】一、 正多边形和圆: 1、各边相等, 也相等的多边形是正多边形 2、每一个正多边形都有一个外接圆,外接圆的圆心叫正多边形的 外接圆的半径叫正多边形的 一般用字母R表示,每边所对的圆心角叫 用表示,中心到正多边形一边的距离叫做正多边形的 用r表示3、每一个正几边形都被它的半径分成一个全等的 三角形,被它的半径和边心距分成一个全等的 三角形【名师提醒:正多边形的有关计算,一般是放在一个等腰三角形或一个直角三角形中进行,根
2、据半径、边心距、边长、中心角等之间的边角关系作计算,以正三角形、正方形和正方边形为主】二、 弧长与扇形面积计算: Qo的半径为R,弧长为l,圆心角为n2,扇形的面积为s扇,则有如下公式: L= S扇= = 【名师提醒:1、以上几个公式都可进行变形,2、原公式中涉及的角都不带学位3、扇形的两个公式可根据已知条件灵活进行选择4、圆中的面积计算常见的是求阴影部分的面积,常用的方法有:则图形面积的和与差 割补法 等积变形法 平移法 旋转法等】三、圆柱和圆锥: 1、如图:设圆柱的高为l,底面半径为R则有:S圆柱侧= S圆柱全= V圆柱= 2、如图:设圆锥的母线长为l,底面半径为R 高位h,则有: S圆柱
3、侧= 、 S圆柱全= V圆柱= 【名师提醒:1、圆柱的高有 条,圆锥的高有 条2、圆锥的高h,母线长l,底高半径R满足关系 3、注意圆锥的侧面展开圆中扇形的半径l是圆锥的 扇形的弧长是圆锥的 4、圆锥的母线为l,底面半径为R,侧面展开图扇形的圆心角度数为n若l=2r,则n= c=3r,则n= c=4r则n= 】【典型例题解析】 考点一:正多边形和圆例1 (2012咸宁)如图,O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A B C D对应训练1(2012安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其
4、内部小正方形的边长都为a,则阴影部分的面积为()A2a2B3a2C4a2D5a2 考点二:圆周长与弧长例2 (2012北海)如图,在边长为1的正方形组成的网格中,ABC的顶点都在格点上,将ABC绕点C顺时针旋转60,则顶点A所经过的路径长为()A10 B C D对应训练3.(2012广安)如图,RtABC的边BC位于直线l上,AC=,ACB=90,A=30若RtABC由现在的位置向右滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为 )(结果用含有的式子表示) 考点三:扇形面积与阴影部分面积例3 (2012毕节地区)如图,在正方形ABCD中,以A为顶点作等边AEF,交BC边于E,交
5、DC边于F;又以A为圆心,AE的长为半径作 若AEF的边长为2,则阴影部分的面积约是()(参考数据: 1.414, 1.732,取3.14)A0.64B1.64C1.68D0.36对应训练3.(2012内江)如图,AB是O的直径,弦CDAB,CDB=30,CD=2,则阴影部分图形的面积为()A4B2CD 考点四:圆柱、圆锥的侧面展开图例4 (2012永州)如图,已知圆O的半径为4,A=45,若一个圆锥的侧面展开图与扇形OBC能完全重合,则该圆锥的底面圆的半径为 1对应训练7(2012襄阳)如图,从一个直径为4 dm的圆形铁皮中剪出一个圆心角为60的扇形ABC,并将剪下来的扇形围成一个圆锥,则圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 复习 第二 十五 有关 计算 学生
限制150内