全国各地高考数学试题及解答分类汇编大全概率随机变量及其分布.doc
《全国各地高考数学试题及解答分类汇编大全概率随机变量及其分布.doc》由会员分享,可在线阅读,更多相关《全国各地高考数学试题及解答分类汇编大全概率随机变量及其分布.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流全国各地高考数学试题及解答分类汇编大全概率随机变量及其分布.精品文档.2008年全国各地高考数学试题及解答分类汇编大全 (16概率、随机变量及其分布)一、选择题:1(2008福建文)某一批花生种子,如果每一粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是(C) 2(2008福建理)某一批花生种子,如果每1粒发牙的概率为, 那么播下4粒种子恰有2粒发芽的概率是(B )A.B. C. D. 3(2008安徽理)设两个正态分布和的密度函数图像如图所示。则有( A )ABCD4. (2008湖南理)设随机变量服从正态分布,若,则c= ( B. )
2、A.1 B.2 C.3D.44【答案】B4【解析】 解得=2, 所以选B.5(2008江西文、理)电子钟一天显示的时间是从0000到2359,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( C ) A B C D5.一天显示的时间总共有种,和为23总共有4种,故所求概率为.6(2008辽宁文、理) 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) ABCD7(2008山东理)在某地的奥运火炬传递活动中,有编号为1,2,3,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等
3、差数列的概率为( B )(A)(B) (C)(D)8 (2008重庆理)已知随机变量服从正态分布N(3,a2),则P(3(D ) (A) (B) (C)(D)9 (2008重庆文)从编号为1,2,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为( B )(A)(B)(C)(D)二、填空题:1(2008江苏) 一个骰子连续投2 次,点数和为4 的概率 1【解析】本小题考查古典概型基本事件共66 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故【答案】2.在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1
4、的点构成的区域,向D 中随机投一点,则落入E 中的概率_ 2【解析】本小题考查古典概型如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此【答案】3.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 0.98 .4(2008上海文)在平面直角坐标系中,从六个点:中任取三个,这三点能构成三角形的概率是(结果用分数表示)5.(2008上海理)在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F
5、(3,3)中任取三个,这三点能构成三角形的概率是 . (结果用分数表示)三、解答题:1(2008安徽文)在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.()现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g”的概率。()若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率。1解:(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带
6、有后鼻音“g”的概率为,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为(2)设表示所抽取的三张卡片中,恰有张卡片带有后鼻音“g”的事件,且其相应的概率为则 因而所求概率为2(2008安徽理)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。()求n,p的值并写出的分布列;()若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率2 (1)由得,从而的分布列为0123456(2)记”需要补种沙柳”为事件A, 则 得 或 3(2008北京文)甲、
7、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.()求甲、乙两人同时参加A岗位服务的概率;()求甲、乙两人不在同一个岗位服务的概率.3解:()记甲、乙两人同时参加A岗位服务为事件EA,那么P(EA)=即甲、乙两人同时参加A岗位服务的概率是()记甲、乙两个同时参加同一岗位服务为事件E,那么P(E)所以,甲、乙两人不在同一岗位服务的概率是P()=1-P(E)=4(2008北京理)甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者()求甲、乙两人同时参加岗位服务的概率;()求甲、乙两人不在同一个岗位服务的概率;()设随机变量为这五
8、名志愿者中参加岗位服务的人数,求的分布列4解:()记甲、乙两人同时参加岗位服务为事件,那么,即甲、乙两人同时参加岗位服务的概率是()记甲、乙两人同时参加同一岗位服务为事件,那么,所以,甲、乙两人不在同一岗位服务的概率是()随机变量可能取的值为1,2事件“”是指有两人同时参加岗位服务,则所以,的分布列是135. (2008福建文)三人独立破译同一份密码,已知三人各自译出密码的概率分别为,且他们是否破译出密码互不影响。(1)求恰有二人破译出密码的概率;(2)“密码被破译”与“密码未被破译”的概率那个大?说明理由。5.解:记“第i个人破译出密码”为事件,则: (1)设“恰好二人破译出密码”为事件B,
9、则有:(2)设“密码被破译”为事件C,“密码未被破译”为事件D,则有: 所以密码被破译的概率大6(2008福建理)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.()求他不需要补考就可获得证书的概率;()在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.6本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题/解愉问题的能力.满
10、分12分. 解:设“科目A第一次考试合格”为事件A,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B,“科目B补考合格”为事件B. ()不需要补考就获得证书的事件为A1B1,注意到A1与B1相互独立,则.答:该考生不需要补考就获得证书的概率为.()由已知得,2,3,4,注意到各事件之间的独立性与互斥性,可得故答:该考生参加考试次数的数学期望为.7. (2008广东文)某初级中学共有学生2000名,各年级男、女生人数如下表. 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19 .(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生, 问应在初三年级抽取多少名?(
11、3)已知,求初三年级中女生比男生多的概率。7.解: (1)由,解得, (2)初三年级人数为, 设应在初三年级抽取m人,则,解得m=12. 答: 应在初三年级抽取12名. (3)设初三年级女生比男生多的事件为,初三年级女生和男生数记为数对,由(2)知,则基本事件总数有:共11个,而事件包含的基本事件有:共5个,8. (2008广东理)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获利分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为.(1)求的分布列;(2)求1件产品的平均利润(即的
12、数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%. 如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?8.解: (1) 依题意得, 的所有可能取值为6,2,1,-2. =6,2,1,-2分别对应抽取1件产品为一等品、二等品、三等品、次品这四个事件. 所以, 所以的分布列为 (2) 1件产品的平均利润为E=60.63+20.25+10.1-20.02=4.34 (3)设三等品率为x,则二等品率为0.29-x,此时的分布列为 1件产品的平均利润为E=60.7+2(0.29-x)+x-20.01=4.76-x令E=4.76-x4.73,
13、解得=3%,答:三等品率最多是3%.9、(2008海南、宁夏文)为了了解中华人民共和国道路交通安全法在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。9解:()总体平均数为-4分()设表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”从总体中抽取2个个体全部可能的基本结果有:,共15个基本结果事件包括的基本结果有:,共有7个基本结果所以所求的概率为-12
14、分10、(2008海南、宁夏理)A、B两个投资项目的利润率分别为随机变量X1和X2。根据市场分析,X1和X2的分布列分别为X15%10%X22%8%12%P0.80.2P0.20.50.3(1)在A、B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1、DY2;(2)将x(0x100)万元投资A项目,100x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和。求f(x)的最小值,并指出x为何值时,f(x)取到最小值。(注:D(aX + b) = a2DX)10解:()由题设可知和的分布列分别为 Y1510P0.80.2 Y22
15、812P0.20.50.3当时,为最小值11. (2008湖北理)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球.表示所取球的标号.()求的分布列,期望和方差;()若=a-b,E=1,D=11,试求a,b的值.11.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)解:()的分布列为:01234P()由,得a22.7511,即又所以当a=2时,由121.5+b,得b=-2; 当a=-2时,由1-21.5+b,得b=4.或即为所求.12(2008湖南文) 甲乙丙三人参加一家公司的招聘面试,面试合格
16、者可正式签约。甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试合格的概率都是,且面试是否合格互不影响。求:(I)至少一人面试合格的概率; (II)没有人签约的概率。12解:用A,B,C分别表示事件甲、乙、丙面试合格由题意知A,B,C相互独立,且(I)至少有一人面试合格的概率是(II)没有人签约的概率为13 (2008湖南理)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:()至少有1人面试合格的概率
17、;()签约人数的分布列和数学期望.13解: 用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)P(B)P(C).()至少有1人面试合格的概率是()的可能取值为0,1,2,3.所以, 的分布列是0123P的期望14(2008江西文) 因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4(1)求两年后柑桔产量恰好达到灾
18、前产量的概率;(2)求两年后柑桔产量超过灾前产量的概率.14解:(1)令A表示两年后柑桔产量恰好达到灾前产量这一事件(2)令B表示两年后柑桔产量超过灾前产量这一事件15(2008江西理) 因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使
19、柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6实施每种方案第一年与第二年相互独立,令表示方案实施两年后柑桔产量达到灾前产量的倍数(1)写出1、2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元问实施哪种方案的平均利润更大?15.解:(1)1的分布列为10.80.911.1251.25P10.20.150.350.150.152的分布列为20.80.9611.21.44P20.30.20.180.240.08(2)由(1)可得P11的概率P(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地 高考 数学试题 解答 分类 汇编 大全 概率 随机变量 及其 分布
限制150内