充电器原理与设计.doc
《充电器原理与设计.doc》由会员分享,可在线阅读,更多相关《充电器原理与设计.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流充电器原理与设计.精品文档.引言 由于铅酸蓄电池维护简单、价格低廉、供电可靠、使用寿命长,广泛作为汽车、飞机、轮船等机动车辆或发电机组的启动电源,也在各类需要不间断供电的电子设备和便携式仪器仪表中用作一些电器及控制回路的工作电源.随着经济的发展,大容量蓄电池的应用迅速增加,人们希望能快捷、安全地对蓄电池进行充电,而现有市场销售的充电器充电电流多为20A.为了满足人们对大功率充电器的需求,设计了一款基于LPC933 充电电流50A、充电功率740W、功能完善、可扩充的智能充电器. 1 充电器原理与设计 1.1 总体硬件设计 由于充电对象是铅酸蓄
2、电池,设计中采用电流、电压负反馈的方法来达到恒流、恒压充电的目的,并对充电过程各种工作参量进行实时监测及智能多段式充电策略的精确控制,应用了LPC933单片机及相应的控制电路.充电器硬件原理图如图1 所示. 图1 充电器原理图 充电器电路主要包括主电路、信号控制两部分.主电路部分由桥式整流、PWM波形产生和直流滤波等组成.单相电源为220 V交流电时,开关K1闭和,单相电源为110 V时,开关K1断开,经全桥整流为300 V左右的直流电,由大电容进行低频滤波稳压,圆只MOS 器件S1、S2 组成半桥逆变器.PWM波形产生部分由SG3525根据反馈电压产生,通过给MOS 管S1、S2 加高频方波
3、控制信号,使S1和S2 周期性地导通,可得到脉宽可调的高频交流电,经高频变压器耦合到副边,再经整流管D2和D3整流,L1 和C4滤波,在输出侧得到低纹波直流电压.显示模块是用来显示电池的当前电压与充电电流,显示状态由面板上实现按钮启动. 1.2 电路功能设计与分析 1.2.1 PWM 宽度设置 脉宽调制控制电路采用开关电源专用集成芯片SG3525,SG3525有两路驱动输出,OUT-A 与OUT-B 反向输出,可设置死区时间.控制过程主要是移动调节导通的占空比来调节输出功率.移相PWM的相移控制是通过误差放大器来实现的,误差放大器的同相端E/A+(脚2)接由单片机控制输出的电压信号.反相端E/
4、A-(脚1)接主电路输出电流或电压的反馈信号,电流和电压负反馈信号之间的切换由肖特基二极管D1 的导通截止实现.反馈信号和标准电位比较,差值经放大输出,送至移相脉宽控制器,控制OUT-A与OUT-B 之间的相位,最终调整波形占空比,使电压和充电电流稳定在预定值上. 1.2.2 电流采样 电流采样是大电流充电器的关键技术之一.通常采用电阻采样,但在50A 以上的大电流电路中是难于适用的.为此,设计了在高频变压器的初级线圈处增加环形电流互感器,匝数比为1:50,不仅达到精确电流采样的作用,还使采样功耗控制在0.5W以内. 1.2.3 限流保护措施 正常情况下,开关电源应工作在额定输出功率范围之内,
5、避免电源工作在超出正常输出状态,但在实际工作中很难预测,故电路将高频变压器输出的电流经电流互感器耦合输出,再经二极管整流,电容滤波及电阻分压后,与比较器的同相端电压进行比较,当输出电压过高时,SG3525停止输出方波驱动信号,从而保护电路. 1.2.4 散热问题 研发初期发现,逆变器主要部件两个大功率开关管S1 和S2 及直流输出部分的全波整流管D2和D3,在充电电流大于30粤时出现过热问题,无法满足老化要求.经过硬件反复调试发现,从以下几个方面可以有效解决过热的问题. (1)增加交流共模滤波电感,调试发现电网的高频干扰信号是造成逆变器开关管温升异常的重要原因; (2)在直流输出端,增加滤波电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 充电器 原理 设计
限制150内