《充分条件与必要条件1.doc》由会员分享,可在线阅读,更多相关《充分条件与必要条件1.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流充分条件与必要条件1教学目标(1)正确理解充分条件、必要条件和充要条件的概念;(2)能正确判断是充分条件、必要条件还是充要条件;(3)培养学生的逻辑思维能力及归纳总结能力;(4)在充要条件的教学中,培养等价转化思想 教学建议 (一)教材分析1知识结构首先给出推断符号“ ”,并引出充分条件与必要条件的意义,在此基础上讲述了充要条件的初步知识2重点难点分析本节的重点与难点是关于充要条件的判断(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件 和结论 之间的因果关系(2)在判断条件 和结
2、论 之间的因果关系中应该:首先分清条件是什么,结论是什么;然后尝试用条件推结论,再尝试用结论推条件推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;最后再指出条件是结论的什么条件(3)在讨论条件 和条件 的关系时,要注意:若 ,但 ,则 是 的充分但不必要条件;若 ,但 ,则 是 的必要但不充分条件;若 ,且 ,则 是 的充要条件;若 ,且 ,则 是 的充要条件;若 ,且 ,则 是 的既不充分也不必要条件(4)若条件 以集合 的形式出现,结论 以集合 的形式出现,则借助集合知识,有助于充要条件的理解和判断若 ,则 是 的充分条件;显然,要使元素 ,只需 就够了类似地还有:
3、若 ,则 是 的必要条件;若 ,则 是 的充要条件;若 ,且 ,则 是 的既不必要也不充分条件(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性由于原命题 逆否命题,逆命题 否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立(二)教法建议1学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系充要条件中的 , 与四种命题中的 , 要求是一样的它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若 则 ”形式的复合命题2由于这节课概念
4、性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性3由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念4教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念教
5、学设计示例充要条件教学目标:(1)正确理解充分条件、必要条件和充要条件的概念;(2)能正确判断是充分条件、必要条件还是充要条件;(3)培养学生的逻辑思维能力及归纳总结能力;(4)在充要条件的教学中,培养等价转化思想教学重点难点:关于充要条件的判断教学过程设计1复习引入练习:判断下列命题是真命题还是假命题:(1)若 ,则 ;(2)若 ,则 ;(3)全等三角形的面积相等;(4)对角线互相垂直的四边形是菱形;(5)若 ,则 ;(6)若方程 有两个不等的实数解,则 (学生口答,教师板书)(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题置疑:对于命题“若 ,则 ”,有时是真命题,有时是假命
6、题如何判断其真假的?答:看 能不能推出 ,如果 能推出 ,则原命题是真命题,否则就是假命题对于命题“若 ,则 ”,如果由 经过推理能推出 ,也就是说,如果 成立,那么 一定成立换句话说,只要有条件 就能充分地保证结论 的成立,这时我们称条件 是 成立的充分条件,记作 2讲授新课(板书充分条件的定义)一般地,如果已知 ,那么我们就说 是 成立的充分条件提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系(学生口答)(1)“ ,”是“ ”成立的充分条件;(2)“三角形全等”是“三角形面积相等”成立的充分条件;(3)“方程 的有两个不等的实数解”是“ ”成立的充分条件从另一个角度
7、看,如果 成立,那么其逆否命题 也成立,即如果没有 ,也就没有 ,亦即 是 成立的必须要有的条件,也就是必要条件(板书必要条件的定义)提出问题:用“充分条件”和“必要条件”来叙述上述6个命题(学生口答)(1)因为 ,所以 是 的充分条件, 是 的必要条件;(2)因为 ,所以 是 的必要条件, 是 的充分条件;(3)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;(4)因为“四边形的对角线互相垂直” “四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“
8、四边形的对角线互相垂直”的充分条件;(5)因为 ,所以 是 的必要条件, 是 的充分条件;(6)因为“方程 的有两个不等的实根” “ ”,而且“方程 的有两个不等的实根” “ ”,所以“方程 的有两个不等的实根”是“ ”充分条件,而且是必要条件总结:如果 是 的充分条件, 又是 的必要条件,则称 是 的充分必要条件,简称充要条件,记作 (板书充要条件的定义)3巩固新课例1 BA是B的什么条件B是 的什么条件是有理数是实数 、 是奇数是偶数 是4的倍数是6的倍数 (学生活动,教师引导学生作出下面回答)因为有理数一定是实数,但实数不一定是有理数,所以 是 的充分非必要条件, 是 的必要非充分条件;
9、 一定能推出 ,而 不一定推出 ,所以 是 的充分非必要条件, 是 的必要非充分条件; 、 是奇数,那么 一定是偶数; 是偶数, 、 不一定都是奇数(可能都为偶数),所以 是 的充分非必要条件, 是 的必要非充分条件; 表示 或 ,所以 是 成立的必要非充分条件;由交集的定义可知 且 是 成立的充要条件;由 知 且 ,所以 是 成立的充分非必要条件;由 知 或 ,所以 是 , 成立的必要非充分条件;易知“ 是4的倍数”是“ 是6的倍数”成立的既非充分又非必要条件;(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识)例2 已知 是 的充要条件, 是 的必要条件同时又是 的充分条件,试 与 的关系(投影)解:由已知得,所以 是 的充分条件,或 是 的必要条件4小结回授今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础课内练习:课本(人教版,试验修订本,第一册(上)第 35页练习l、2;第36页练习l、2(通过练习,检查学生掌握情况,有针对性的进行讲评)5课外作业:教材第36页 习题1.8 1、2、3.精品文档.充分条件与必要条件
限制150内