单相正弦波逆变电源的设计.doc
《单相正弦波逆变电源的设计.doc》由会员分享,可在线阅读,更多相关《单相正弦波逆变电源的设计.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流单相正弦波逆变电源的设计.精品文档.第1章 概述 任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源 。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功
2、耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波
3、逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V10%,而正弦波逆变电源在电网电压在110260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具有深远的意义。目前市场上正弦波逆变电源中功率管多采用双极型晶体管,开关频率可达几十
4、千赫;采用MOSFET的正弦波逆变电源转抽象频率可达几百千赫。为提高开关频率,必须采用高速开关器件。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感及变压器的尺寸,而且还能够抑制干扰,改善系统的动态性能。因此,高频化是正弦波逆变电源的主要发展方向。高可靠性正弦波逆变电源的使用的元器件比连续工作电源少数十倍,因此提高的可靠性。从寿命角度出发,电解电容、光耦合器及排风扇等器件的寿命决定着电源的寿命。所以,要从设计方面着眼,尽可能使较少的器件,提高集成度。这样不但解决了电路复杂、可靠性差的问题,也增加了保护等功能,简化了电路,提高了平均无故障时间。正弦波逆变电源的发展从来都是与半导体器件及磁
5、性元件等的发展休戚相关的。高频化的实现,需要相应的高速半导体器件和性能优良的高频电磁元件。发展功率MOSFET、IGBT等新型高速器件,开发高频用的低损磁性材料,改进磁元件的结构及设计方法,提高滤波电容的介电常数及降低其等串联电阻等,对于正弦波逆变电源小型化始终产生着巨大的推动作用。总之,人们在正弦波逆变电源技术领域里,边研究低损耗回路技术,边开发新型元器件,两者相互促进并推动着正弦波逆变电源以每年过两位数的市场增长率向小型、薄型、高频、低噪声以及高可靠性方向发展。第2章 设计总思路2.1总体框架图滤波电路逆变电路输入315V直流电驱动电路UC3842脉宽调制电路输出220V交流电误差比较 图
6、1 总体框图此次课程设计要求输入315V直流,输出220V交流,主电路采用单相桥式逆变电路,对高频开关器件常用PWM波控制,要产生正弦波可采用SPWM控制方法,通过控制电力电子器件MOSFET的关断来控制产生交变正弦波电压。控制电路主要实现产生SPWM波,设计要求选用UC3842电流控制型PWM控制器产生控制脉冲。而UC3842实质上是通过输入的两路波进行比较,输出比较后形成的脉冲波,鉴于UC3842的这一特征,可以通过输入正弦漫头波和锯齿波进行比较得到所需的正弦波控制脉冲。正弦波产生器的设计有多种方法,本次课程设计采用555定时器多谐振电路产生方波经过滤波产生正弦波的方法作为正弦波产生器,再
7、经过整流,使之成为正弦漫头波。锯齿波的产生电路比较简单,可以直接利用UC3842内部提供的谐振器加入外围电阻电容产生。此外电路要求输出的正弦波幅度可调,此时就需要使加入的正弦波漫头波幅值可调,此可以通过一加法器使之与设置电压相叠加产生电压可变的正弦电压。主电路和控制电路的一些中间环节都是需要滤波的,由于产用SPWM控制,主电路的谐波成分较少,可以通过简单的RC无源滤波。控制电路中的方波要变成较为标准的正弦波,要滤去的谐波成分就要多得多,可以采用有源滤波,且可以通过积分环节使方波变成比较好的正弦波。由于设计出来的电路是作为电源用的,对电源电流、电压检测就显得非常有必要了,可以通过从电源负载取出电
8、流信号作为UC3842的关断信号,从而实现主电路的限流作用。要实现电流、电压的稳定,则可以通过取出的电流、电压信号与控制电路构成闭环控制来实现。为了不至使电路结构过于复杂,只设计了简单的电压反馈环使电压基本能跟随给定维持恒定。2.2设计的原理和思路图2 正弦波逆变电源的组成框图该电路采用他励式,2管双推动输出脉宽调制方式输出电压为220V,输出电流2A,有欠压、过压和过流等多重保护功能。第3章 主电路设计3.1 SPWM波的实现3.1.1 PWM固定频率的产生PWM波形产生原理图如图3.1.1所示图3.1.1 PWM波的产生电路图PWM固定频率是由SG3525芯片产生。SG3525芯片的资料见
9、如下:管脚说明:引脚1:误差放大反向输入 脚9:PWM比较补偿信号输入端引脚2:误差放大同向输入 引脚10:外关断信号输入端引脚3:振荡器外接同步信号输入端 引脚11:输出A引脚4:振荡器输出端 引脚12:信号地引脚5:振荡器定时电容接入端 引脚13:输出级偏置电压接入端引脚6:振荡器定时电祖接入端 引脚14:输出端B引脚7:振荡器放电端 引脚15:偏置电源输入端引脚8:软启动电容接入端 引脚16:基准电源输出端图中11与14脚输出两路互补的PWM波,其频率由与5、6管脚所连的R、C决定。PWM频率计算式如下:f=1/C5(0.7R15+3R16),调节6端的电阻即可改变PWM输出频率。同时,
10、芯片内部16脚的基准电压为5.1V采用了温度补偿,设有过流保护电路,5.1V反馈到2端同向输入端,当反向输入端也为5.1V时,芯片稳定,正常工作。若两端电压不相等,芯片内部结构自动调整将其保持稳定。在脉宽比较起的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化,由于结构上有电压环河电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,目前比较理想的新型控制器。R和C设定了PWM芯片的工作频率,计算公式为T=(0.67*RT+1.3*RD)*CT。再通过R13和C3反馈回路。构成频率补偿网络。C6
11、为软启动时间设定电容。3.1.2 SPWM波的原理 在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲宽度也最大,脉冲间隔最小,反之正弦值较小时,脉冲宽度也小,脉冲间的间隔较大。这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减少,成为正弦波脉宽调制。3.1.3 SPWM调制信号的产生 要得到正弦电压的输出,就要使逆变电路的控制信号以SPWM方式控制功率管的开关,所得到的脉冲方波输出再经过滤波就可以得到正弦输出电压。通过SG3525来实现输出正弦电压,首先要得到SPWM的调制信号,而要得到SPWM调制信号,必须得有一个幅值在l3 5V,按正弦规律变化的馒头波,将
12、它加到SG3525脚2,并与锯齿波比较,就可得到正弦脉宽调制波实现SPWM的控制电路框图如图3.1.3(a)所示,实际电路各点的波形如图3.1.3(b)所示。误差信号基准电压加法器整流电路滤波电路调制电路基准方 波SG3525时序电路图3.1.3(a) SPWM波控制电路框图图3.1.3(b) SPWM电路主要节点波形由图3.1.3(a) 图3.1.3(b)可知,基准50Hz的方波是由555芯片生成的,用来控制输出电压有效值和基准值比较产生的误差信号,使其转换成50Hz的方波,经过低频滤波,得到正弦的控制信号。3.2 保护电路模块该系统是由直流边交流,弱点变为强电。故对系统进行必要的安全保护是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单相 正弦波 电源 设计
限制150内