双容水箱水位控制系统设计设计.doc
《双容水箱水位控制系统设计设计.doc》由会员分享,可在线阅读,更多相关《双容水箱水位控制系统设计设计.doc(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流双容水箱水位控制系统设计设计.精品文档.双容水箱水位控制系统设计摘要双容水箱液位控制系统是采用先进的控制算法完成对过程液位的控制的控制系统,它在饮料、食品加工、溶液过滤、化工生产等多种行业的生产加工过程中均有广泛应用。在本设计中充分利用自动化仪表技术,计算机技术,通讯技术和自动控制技术,以实现对水箱液位的串级控制。首先对被控对象的模型进行分析,并采用实验建模法求取模型的传递函数。其次,根据被控对象模型和被控过程特性设计串级控制系统,采用动态仿真技术对控制系统的性能进行分析。然后,设计并组建仪表过程控制系统,通过智能调节仪表实现对液位的串级PI
2、D控制。最后,借助数据采集模块MCGS组态软件和数字控制器,设计并组建远程计算机过程控制系统,完成控制系统实验和结果分析。关键词: 液位,模型,PID控制,仪表过程控制系统,计算机过程控制系统AbstractDouble tank water level control system is the use of advanced control algorithm of process liquid level control system, it is in the beverage, food processing, filtering solution, chemical product
3、ion and other industries in the production process has been widely used. In the design of the full use of automation technology, computer technology, communication technology and automatic control technology, in order to achieve the water tank liquid level cascade control. Firstly, the object model
4、is analyzed, and the experimental modeling method for model transfer function. Secondly, according to the controlled object model and the controlled process characteristic design of cascade control system, using dynamic simulation technology to the control system performance analysis. Then, design a
5、nd construction process control instrumentation system, through the intelligent controller for liquid level cascade PID control. Finally, with the help of a data acquisition module, MCGS configuration software and digital controller, design and establishment of a remote computer process control syst
6、em, complete control system experiment and result analysisKeywords: liquid level,model PID control,indicator process control system,computer process control system目 录摘 要Abstract1 绪论12 被控对象建模22.1 水箱模型分析22.2 阶跃响应曲线法建立模型33 系统控制方案设计与仿真73.1 液位串级控制系统介绍73.2 PID控制原理73.3 系统控制方案设计103.4 控制系统仿真124 建立仪表过程控制系统174
7、.1 过程仪表介绍174.2 仪表过程控制系统的组建194.3 仪表过程控制系统PID参数整定235 模拟计算机过程控制系统255.1 计算机过程控制系统硬件设计255.2 MCGS软件工程组态285.3 组态软件调试386 结论40参考文献41致谢42附录431绪论双容水箱系统是一种比较常见的工业现场液位系统 ,在实际生产中 ,双容水箱控制系统在石油、化工环保水处理冶金等行业尤为常见。通过液位的检测与控制从而调节容器内的输入输出物料的平衡,以便保证生产过程中各环节的物料搭配得当。 经过比较和筛选,串级控制系统PID控制无论是从操作性、经济性还是从系统的控制效果均有比较突出的特性,因此采用串级
8、控制系统PID控制对双荣水箱液位控制系统实现控制。论文以THJ-2高级过程控制实验系统为基础的实验数据作为出发点,利用MATLAB的曲线拟合的方法分别仿真出系统中上水箱、下水箱的输出响应曲线。对曲线进行处理求出各水箱的参数,用所求出的参数列写出水箱的传递函数。采用复杂控制系统中的串级控制系统列写出系统框图,根据串级控制系统PID参数整定的方法整定出主控制器和副控制器的P、I、D的数值,从而满足控制系统对各项性能的要求。对于控制器的选择,从经济以及控制效果考虑采用智能仪表实现控制,并应用组态软件对系统实施监控。为了能够使双容水箱系统能实现远程的检测和控制,本文又进一步的设计出计算机过程控制系统,
9、利用ICP-7017数据采集模块实现模拟量输入通道的功能利用ICP-7024数据采集模块实现模拟量输入通道的功能(自带485通讯接口),通过RS232/485完成通讯转换实现与计算机的通讯和控制。ICP-7000系列采集模块的作用是将传感器检测到的被控参数标准信号通过A/D转换送入计算机,计算机是将控制运算发出的控制信号通过D/A转换发给执行机构(调节阀、变频器)。整个控制系统的控制算法及监控功能都在控制计算机中实现。对于计算机控制,采用的是组态软件MCGS来实现的,通过对软件进行编程使组态软件模拟出双容水箱液位控制系统的手动和自动两种工作状态。2被控对象建模在控制系统设计工作中,需要针对被控
10、过程中的合适对象建立数学模型。被控对象的数学模型是设计过程控制系统、确定控制方案、分析质量指标、整定调节器参数等的重要依据。被控对象的数学模型(动态特性)是指过程在各输入量(包括控制量和扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。在液位串级控制系统中,我们所关心的是如何控制好水箱的液位。上水箱和下水箱是系统的被控对象,必须通过测定和计算他们模型,来分析系统的稳态性能、动态特性,为其他的设计工作提供依据。上水箱和下水箱为THJ-2高级过程控制实验装置中上下两个串接的有机玻璃圆筒形水箱,另有不锈钢储水箱负责供水与储水。上水箱尺寸为:d=25cm,h=240mm;下水箱尺寸为:d
11、=35cm,h=240mm,每个水箱分为三个槽:缓冲槽、工作槽、出水槽。2.1水箱模型分析 Q112Q2Ah图2.1液位被控过程简明原理图系统中上水箱和下水箱液位变化过程各是一个具有自衡能力的单容过程。如图,水箱的流入量为Q1,流出量为Q2,通过改变阀1的开度改变Q1值,改变阀2的开度可以改变Q2值。液位h越高,水箱内的静压力增大,Q2也越大。液位h的变化反映了Q1和Q2不等而导致水箱蓄水或泻水的过程。若Q1作为被控过程的输入量,h为其输出量,则该被控过程的数学模型就是h与Q1之间的数学表达式。 根据动态物料平衡, Q1-Q2=A(dh/dt) ;Q1-Q2=A(dh/dt) 在静态时,Q1=
12、Q2,dh/dt=0;当Q1发生变化后,液位h随之变化,水箱出口处的静压也随之变化,Q2也发生变化。由流体力学可知,液位h与流量之间为非线性关系。但为了简便起见,做线性化处理得 Q2=h/R2,经拉氏变换得单容液位过程的传递函数为W0(s)=H(s)/Q1(s)=R2/(R2Cs+1)=K/(Ts+1)注:Q1 Q2h:分别为偏离某一个平衡状态Q10Q20h0的增量。R2:阀2的阻力 A:水箱截面积 T:液位过程的时间常数(T=R2C) K:液位过程的放大系数(K=R2) C:液位过程容量系数2.2阶跃响应曲线法建立模型在本设计中将通过实验建模的方法,分别测定被控对象上水箱和下水箱在输入阶跃信
13、号后的液位响应曲线和相关参数。通过磁力驱动泵供水,手动控制电动调节阀的开度大小,改变上水箱/下水箱液位的给定量,从而对被控对象施加阶跃输入信号,记录阶跃响应曲线。在测定模型参数中可以通过以下两种方法控制调节阀,对被控对象施加阶跃信号:(1) 通过智能调节仪表改变调节阀开度,增减水箱的流入水量大小,从而改变水箱液位实现对被控对象的阶跃信号输入。施加阶跃信号(2)改变调节阀开度,控制水箱进水量的大小,从而改变水箱液位,实现对被控对象的阶跃信号输入。控制进水量阶跃响应输出 上水箱/下水箱电动调节阀电动磁力泵供水图2.1 水箱模型测定原理图2.2.1上水箱阶跃响应参数:记录阶跃响应参数(间隔30s采集
14、数据):表2.1上水箱阶跃响应数据123.62744.771347.761947.64230.50845.561447.872047.09335.25946.171547.892146.52438.691047.061647.282246.41541.321147.251747.012346.28643.311247.461847.152445.902.2.2下水箱阶跃响应参数:记录阶跃响应参数(间隔30s采集数据): 表2.2下水箱阶跃响应数据154.021384.612598.4537103.9349107.20257.191486.342699.1938104.3950107.28360
15、.281587.712799.8339104.8451107.32463.531689.1828100.4340105.0652107.38566.561790.4429101.0141105.5353107.56669.521891.7630101.4242105.8054107.66772.261993.0431101.8143106.0855107.82874.792094.1132102.2644106.3356107.67977.002195.1833102.7945106.4157107.551079.072296.0434103.1946106.6158107.391180.87
16、2396.9635103.3647106.6559107.251282.882497.4936103.6548106.9460107.10由于实验测定数据存在误差,直接使用计算法求解水箱模型会使误差增大。所以使用MATLAB软件对实验数据进行处理,根据最小二乘法对响应曲线进行最佳拟合后,再计算水箱模型。两组实验数据中将阶跃响应初始点的值作为Y轴坐标零点,后面的数据依次减去初始值处理,作为Y轴上的各阶跃响应数据点,采样时间作为X轴1。2.2.3求取上水箱模型传递函数在MATLAB的命令窗口输入曲线拟合指令: x=0:30:420; y=0 6.88 11.63 15.07 17.7 19.69
17、21.15 21.94 22.55 23.44 23.63 23.84 24.14 24.25 24.27 ; p=polyfit(x,y,4); xi=0:3:420; yi=polyval(p,xi); plot(x,y,b:oxi,yi,r)。 图2.2上水箱拟合曲线注:图中曲线为拟合曲线,圆点为原数据点。数据点与曲线基本拟合1:上述测量数据来源:姜秀英,张翠宣.过程控制系统实训如图所示,利用四阶多项式近似拟合上水箱响应曲线,得到多项式的表达式:P(t)-1.8753e(-009)t4+2.2734e(-006)t3 -0.0010761t2+0.24707t+0.13991 式 (2.
18、1)根据曲线采用切线作图法计算上水箱特性参数,当阶跃响应曲线在输入量x(t)产生阶跃的瞬间,即t=0时,其曲线斜率为最大,然后逐渐上升到稳态值,该响应曲线可用一阶惯性环节近似描述,需确定K和T。而斜率K为P(t)在t=0的导数P(0)= 0.24707,以此做切线交稳态值于A点,映射在t轴上的B点的值为T。图2.3上水箱模型计算曲线 阶跃响应扰动值为10,静态放大系数为阶跃响应曲线的稳态值与阶跃扰动值之比,所以上水箱传递函数为 式(2.2)2.2.4下水箱模型建立在MATLAB的命令窗口输入曲线拟合指令:x=0: 30:1650;y=0 3.17 6.26 9.51 12.54 15.5 18
19、.4 20.77 22.98 25.05 26.85 28.86 30.59 32.32 33.69 35.16 36.42 37.74 39.02 40.09 41.16 42.02 42.94 43.47 44.43 45.17 45.81 46.41 46.99 47.4 47.79 48.24 48.77 49.17 49.34 49.65 49.91 50.37 50.82 51.04 51.51 51.78 52.06 52.31 52.39 52.59 52.63 52.92 53.18 53.26 53.3 53.36 53.54 53.64 53.8 53.8; p=poly
20、fit(x,y,4); xi=0:3:1650; yi=polyval(p,xi); plot(x,y,b:oxi,yi,r)。在MATLAB中绘出曲线如下:图2.4下水箱拟合曲线注:图中曲线为拟合曲线,圆点为原数据点。数据点与曲线基本拟合如图所示,利用四阶多项式近似拟合下水箱的响应曲线,得到多项式的表达式P(t)= -1.1061e(-011)t4+5.7384(e-008)t3 -0.00011849t2 +0.12175t-0.31385 式(2.3)根据曲线采用切线作图法计算下水箱特性参数,当阶跃响应曲线在输入量x(t)产生阶跃的瞬间,即t=0时,其曲线斜率为最大,然后逐渐上升到稳态值
21、,该响应曲线可用一阶惯性环节近似描述,需确定K和T.而斜率K为P(t)在t=0的导数P(0)=0.12175,以此做切线交稳态值于A点,映射在t轴上的B点的值为T。图2.5下水箱模型计算曲线 阶跃响应扰动值为10,静态放大系数为阶跃响应曲线的稳态值与阶跃扰 动值之比 ,所以下水箱传递函数为 在实验建模的过程中,实验测取的被控对象为广义的被控对象,其动态特性包括了调节阀和测量变送器,即广义被控对象的传递函数为,为调节阀的传递函数,Gm(s)为测量变送器的传递函数。3系统控制方案设计与仿真控制方案设计是过程控制系统设计的核心,需要以被控过程模型和系统性能要求为依据,合理选择系统性能指标,合理选择被
22、控参数,合理设计控制规律,选择检测、变送器和选择执行器。选择正确的设计方案才能使先进的过程仪表和计算机系统在工业生产过程中发挥良好的作3.1液位串级控制系统介绍在工业实际生产中,液位是过程控制系统的重要被控量,在石油化工环保水处理冶金等行业尤为重要。在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。通过液位的检测与控制,了解容器中的原料半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。通过控制计算机可以不断监控生产的运行过程,即时地监视或控制容器液位,保证产品的质量和数量。如果控制系统设计欠妥,会造成生产中对液位控制的不合理,导致原
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水箱 水位 控制系统 设计
限制150内