可逆调速系统设计 《运动控制系统》课程设计说明.doc
《可逆调速系统设计 《运动控制系统》课程设计说明.doc》由会员分享,可在线阅读,更多相关《可逆调速系统设计 《运动控制系统》课程设计说明.doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流可逆调速系统设计 运动控制系统课程设计说明.精品文档.PWM-M可逆调速系统设计运动控制系统课程设计说明书目录摘要3一、直流调速介绍41.1 调速定义41.2 调速方法41.2.1 调节电枢供电电压U41.2.2 改变电动机主磁通41.2.3 改变电枢回路电阻R41.3 调速指标51.3.1 调速范围(包括:恒转矩调速范围/恒功率调速范围)51.3.2 动态速降51.3.3 恢复时间5二、双闭环直流调速系统介绍62.1 转速、电流双闭环调速系统的组成62.2 双闭环调速系统的起动过程72.2.1 理想启动过程72.2.2 实际启动过程分析92
2、.3 双闭环调速系统的起动过程三个特点:112.3.1 饱和非线性控制112.3.2准时间最优控制112.3.3转速超调112.4 PI调节器的稳态特征122.4.1 速调节器不饱和122.4.2 转速调节器饱和132.5 各变量的稳态工作点和稳态参数计算14三、设计任务及要求153.1 设计初始条件153.2 要求完成的主要任务15四、PWM-M调速系统设计164.1 直流PWM-M调速系统164.2 UPE环节的电路波形分析184.3 电流调节器的设计194.3.1 电流环结构框图的化简194.3.2电流调节器参数计算204.3.3 参数校验224.3.4 计算调节器电阻和电容234.4
3、转速调节器的设计234.4.1 电流环的等效闭环传递函数234.4.2 转速环结构的化简和转速调节器结构的选择244.4.3 转速调节器的参数的计算274.4.4 参数校验274.4.5 计算调节器电阻和电容284.5 调速范围静差率的计算29五、系统仿真305.1 仿真软件Simulink介绍305.2 Simulink仿真步骤305.3 双闭环仿真模型315.4 双闭环系统仿真波形图31六、心得体会及小结33七、参考文献34摘要为了满足生产工艺要求,需要改变工作速度,在当代工业上PWM控制调速系统已经被广泛地应用,轧制品种和材料厚度的不同,也要求采用不同的速度。其优点还是日益突现,而带有双
4、闭环的调速系统更是受到广泛欢迎。生产机械的调速方法可以采用机械的方法取得,但是机械设备的变速机构较复杂,所以在现代电力拖动中,大多数采用电气调速方法。电气调速就是对机械的电动机进行转速调节,在某一负载下人为地改变电动机的转速。在实际应用中,电动机作为把电能转换为机械能的主要设备,首先要具有较高的机电能量转换效率;其次应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。直流电动机具有良好的起动、制动性能,适宜在较大范围内调速,在许多需要高性能可控电力拖动领域中得到广泛的应用。近年来
5、交流调速系统发展很快,然而直流拖动系统在理论上和实践上都比较成熟,而且从反馈闭环控制的角度来看,它是交流拖动控制系统的基础,所以应该很好地掌握直流调速系统。采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要在。因此,为了使调速达到高精度、高准度的要求,本次设计使用了电流调节器和转速调节器,以此来组成双闭环,电流环为内环,转速环为外环。这样的设计能够达到任务要求的静态指标和动态指标。关键词:PWM调速、直流电动机、双闭环调速一、直流调速介绍1.1 调速定义调速是指在某一具体负载情况下,通过改变电动据
6、或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。1.2 调速方法1.2.1 调节电枢供电电压U改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。1.2.2 改变电动机主磁通改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。1.2.3 改变电枢回路电阻R在电动机电枢回
7、路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。1.3 调速指标1.3.1 调速范围(包括:恒转矩调速范围/恒功率调速范围) 恒转矩调速范围是指调速系统在额定负载下,可长期稳定运行的最低速度和最高速度之比,一般这个最高速度就是额定速度,比如:1:1000,假定该调速系统的最大(额定速度)为2000rpm,则其最小运行速度为2rpm。指标越宽,调速范围越大,系统性能越好。恒功率调速范围是指调速系统在额定功率下,可长期稳定运行的最低速度和最高速度之比,一般这个最低速度就是额定速度,比如:1:2,
8、假定该调速系统的额定速度为1000rpm,则其最高运行速度为2000rpm。1.3.2 动态速降它是指电机由空载突加额定负载时最大的速度跌落(下降),这个值越小,表明系统响应快,系统特性硬。1.3.3 恢复时间当电机突加额定负载后可以恢复到原先速度所需的时间,时间越短,响应越好,反之表明系统响应慢。二、双闭环直流调速系统介绍2.1 转速、电流双闭环调速系统的组成图2-1双闭环直流调速系统的稳态结构稳态结构图如图2-1所示,两个调节器均采用带限幅作用的PI调节器。转速调节器ASR的输出限幅电压决定了电流给定的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压,图中用带限幅的
9、输出特性表示PI调节器的作用。当调节器饱和时,输出达到限幅值,输出量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和。当调节器不饱和时,PI调节器工作在线性调节状态,其作用是使输入偏差电压在稳态时为零。图2-2 双闭环调速系统的动态结构框图双闭环调速系统的实际动态结构框图如图2-2。由于电流检测信号中常含有交流分量,为了不使它影响到调节器的输入,需要加低通滤波。这样的滤波环节传递函数可用一阶惯性环节来表示,其滤波时间常数按需要选定,以滤平电流检测信号为准。然而,在抑制交流分量的同时,滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个同等时间常数的惯性环节,称
10、作给定滤波环节。其意义是让给定信号和反馈信号经过相同的延时,使得二者在时间上恰好的配合。由测速发电机得到的转速反馈电压含有换向纹波,因此也需要滤波,滤波时间常数用表示。根据和电流环一样的道理,在转速给定通道上也加入时间常数的给定滤波环节。2.2 双闭环调速系统的起动过程2.2.1 理想启动过程由前面的分析可知,采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。如果对系统的动态性能要求较高,例如要求快速起、制动、突加负载动态速降小等等,单闭环系统难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。在单闭环调速系统中,只有电流截至负
11、反馈环节是专门用来控制电流的,但它只是在超过临界电流Idcr值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。带电流截至负反馈的单闭环调速系统启动时的电流和转速波形如图2-3所示。当电流从最大值降下来以后,电机转矩也随之减小,因而加速过程必然拖长。图2-3 带电流截至负反馈得单闭环调速系统启动过程在电机最大电流(转矩)受限的条件下,希望充分利用电机允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态转速后,又让电流立即降低下来,使转矩马上与负载平衡,从而转入稳态运行。这样的理想起动过程波形见图2-4,这时
12、,起动电流呈方形波,而转速是呈线性增长的。这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。图2-4 理想快速启动过程实际上,由于主电路电感的作用,电流不能突变,图2-4所示的理想波形只能得到近似的逼近,不能完全实现。为了实现在允许条件下最快起动,关键要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么采用电流负反馈就应该得到近似的恒流过程。问题是希望在起动过程中只有电流负反馈,而不能让它和转矩负反馈同时加到一个调节器的输入端,到达稳定转速后,又希望只要转速负反馈,不再靠电流负反馈发挥主要的作用。怎样才能做到这种既存在转
13、速和电流两种负反馈作用,又使它们只能分别在不同的阶段起作用呢?双闭环调速系统可以解决这个问题。2.2.2 实际启动过程分析双闭环调速系统突加给定电压,由静止状态起动时,转速和电流的过渡过程示于图2-5。图2-5 双闭环直流调速系统启动过程转速和电流波形由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分成三段,在图中分别标以I、和III。(1)第阶段 电流上升的阶段突加给定电压后,通过两个调节器的控制作用,电动机开始转动。由于机电惯性的作用,转速的增长不会很快,因而转速调节器ASR的输人偏差电压数值较大,其输出很快达到限幅值,强迫电流迅速上升。当时,电流调节器
14、的作用使不再迅猛增长,标志着这一阶段的结束。在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,以保证电流环的调节作用。(2)第阶段 恒流升速阶段从电流升到最大值开始,到转速升到给定值为止,属于恒流升速阶段,是起动过程中的主要阶段。在这个阶段中,ASR一直是饱和的,转速环相当于开环状态,系统表现为在恒值电流给定作用下的电流调节系统,基本上保持电流恒定(电流可能超调,也可能不超调,取决于电流调节器的结构和参数),因而拖动系统的加速度恒定,转速呈线性增长。与此同时,电动机的反电动势正也按线性增长。对电流调节系统来说,这个反电动势是一个线性渐增的扰动量,为了克服这个扰动,和也必须基本上
15、按线性增长,才能保持恒定。由于电流调节器ACR是PI调节器,要使它的输出量按线性增长,其输入偏差电压必须维持一定的恒值,也就是说,应略低于。此外还应指出,为了保证电流环的这种调节作用,在起动过程中电流调节器是不能饱和的,同时整流装置的最大电压也须留有余地,即晶闸管装置也不应饱和,这些都是在设计中必须注意的。(3)第阶段 转速调节阶段在这阶段开始时,转速已经达到给定值,转速调节器的给定与反馈电压相平衡,输入偏差为零,但其输出却由于积分作用还维持在限幅值,所以电动机仍在最大电流下加速,必然使转速超调。转速超调以后,ASR输入端出现负的偏差电压,使它退出饱和状态,其输出电压即ACR的给定电压立即从限
16、幅值降下来,主电流也因而下降。但是,由于仍大于负载电流,在一段时间内,转速仍继续上升。到时,转速n达到峰值。此后,电动机才开始在负载的阻力下减速,与此相应,电流也出现一段小于的过程,直到稳定(设调节器参数已调整好)。在这最后的转速调节阶段内,ASR与ACR都不饱和,同时起调节作用。由于转速调节在外环,ASR处于主导地位,而ACR的作用则是力图使尽快地跟随ASR的输出量,或者说,电流内环是一个电流随动子系统。2.3 双闭环调速系统的起动过程三个特点:2.3.1 饱和非线性控制随着ASR的饱和与不饱和,整个系统处于完全不同的两种状态。当ASR饱和时,转速环开环,系统表现为恒值电流调节的单闭环系统;
17、当ASR不饱和时,转速环闭环,整个系统是一个无静差调速系统,而电流内环则表现为电流随动系统。在不同情况下表现为不同结构的线性系统,这就是饱和非线性控制的特征。决不能简单地应用线性控制理论来分析和设计这样的系统,可以采用分段线性化的方法来处理。分析过渡过程时,还必须注意初始状态,前一阶段的终了状态就是后一阶段的初始状态。如果初始状态不同,即使控制系统的结构和参数都不变,过渡过程还是不一样的。2.3.2准时间最优控制起动过程中主要的阶段是第阶段,即恒流升速阶段,它的特征是电流保持恒定,一般选择为允许的最大值,以便充分发挥电机的过载能力,使起动过程尽可能最快。这个阶段属于电流受限制条件下的最短时间控
18、制,或称“时间最优控制”。但整个起动过程与理想快速起动过程相比还有一些差距,主要表现在第I、两段电流不是突变。不过这两段的时间只占全部起动时间中很小的成份,已无伤大局,所以双闭环调速系统的起动过程可以称为“准时间最优控制”过程。如果一定要追求严格最优控制,控制结构要复杂得多,所取得的效果则有限,并不值得。 采用饱和非线性控制方法实现准时间最优控制是一种很有实用价值的控制策略,在各种多环控制系统中普遍地得到应用。2.3.3转速超调由于采用了饱和非线性控制,起动过程结束进入第段即转速调节阶段后,必须使转速调节器退出饱和状态。按照PI调节器的特性,只有使转速超调,ASR的输人偏差电压为负值,才能使A
19、SR退出饱和。这就是说,采用PI调节器的双闭环调速系统的转速动态响应必然有超调。在一般情况下,转速略有超调对实际运行影响不大。如果工艺上不允许超调,就必须采取另外的控制措施。最后,应该指出,晶闸管整流器的输出电流是单方向的,不可能在制动时产生负的回馈制动转矩。因此,不可逆的双闭环调速系统虽然有很快的起动过程,但在制动时,当电流下降到零以后,就只好自由停车。如果必须加快制动,只能采用电阻能耗制动或电磁抱闸。同样,减速时也有这种情况。类似的问题还可能在空载起动时出现。这时,在起动的第阶段内,电流很快下降到零而不可能变负,于是造成断续的动态电流,从而加剧了转速的振荡,使过渡过程拖长,这是又一种非线性
20、因素造成的。2.4 PI调节器的稳态特征一般存在两种状况:饱和输出达到限幅值;不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。当调节器不饱和时,PI作用使输入偏差电压在稳态时总是零。实际上,在正常运行时,电流调节器是不会达到饱和状态的。只有转速调节器饱和与不饱和两种情况。2.4.1 速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零。因此由第一关系式可得:与此同时,由于ASR不饱和, ,从上述第二个关系式可知:。这就是说,段静特性从=0
21、(理想空载状态)一直延续到。而一般都是大于额定电流的,这就是静特性的运行段。2.4.2 转速调节器饱和这时,ASR输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差的单闭环系统。稳态时最大电流是设计者选定的,取决于电机的容许过载能力和拖动系统允许的最大加度所描述的静特性是图2-6中的A-B段。这样的下垂特性只适合于n的情况。因为如果 ,则,ASR将退出饱和状态图2-6 双闭环调速系统的静特性双闭环调速系统的静特性在负载电流小于时表现为转速无静差,这时,转负反馈起主要调节作用。当负载电流达后,转速调节器饱和,电流调节器起主要调节作用,系统表现为电流无静
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运动控制系统 可逆调速系统设计 运动控制系统课程设计说明 可逆 调速 系统 设计 运动 控制系统 课程设计 说明
限制150内