地下水环境工程复习题.doc
《地下水环境工程复习题.doc》由会员分享,可在线阅读,更多相关《地下水环境工程复习题.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流123 地下水环境工程复习题.精品文档.4 极性使水分子之间存在氢键,导致04范围内水的体积“热缩冷胀”。5 影响表面张力的因素:分子间相互作用力、温度(温度升高,表面张力下降)、压力(随压力增加而下降)。6 对于二组分稀溶液,加入非挥发性溶质B以后,溶剂A的蒸气压会下降。7 亨利定律:在一定温度和平衡状态下,气体在液体里的溶解度(物质的量分数)和该气体的平衡分压成正比。8 Clausius-Clapeyron方程:描述气体溶解度随温度的变化。如果T1 c2,即气体溶解度随温度升高而下降。9 在封闭体系的碳酸平衡中,pH8.3时,H2CO3*
2、可以忽略不计,水中只存在HCO3-和CO32-,可仅考虑二级电离平衡。当pH10.33时,CO32-在各碳酸盐组分中的含量最大;当6.35pH20)。4. 被修复的污染土壤应具较高的渗透性,质地均匀。5. 污染物必须在地下水位以上。41 污染土壤的化学修复:基于污染物土壤化学行为的改良措施,如通过添加改良剂、抑制剂等化学物质降低土壤中污染物的水溶性、扩散性和生物有效性,从而使污染物得以降解或者转化为低毒、无毒性物质或移动性较低的化学形态,以减弱污染物对生态和环境的危害。42 污染土壤的电动修复:通过在污染土壤两侧施加直流电压形成电场梯度,土壤中的污染物在电场作用下通过电迁移、电渗流或电泳的方式
3、被带到电极两端,使污染土壤得以修复的方法。控制土壤pH值是电动修复技术的关键。为了控制阴极区产生的OH-向阳极方向移动,可通过添加有机酸来消除电极反应产生的OH-。43 重金属污染土壤的植物修复技术包括:1. 植物萃取技术:利用重金属超富集植物从土壤中吸收重金属,并将其转动到地上可收割部位。2. 植物钝化技术:利用特殊植物将污染物钝化/固定,降低重金属的生物有效性及迁移性,使其不能为生物所利用,达到钝化/稳定、隔断、阻止其进入水体和食物链的目的,以减少其对生物和环境的危害。3. 植物挥发:植物通过根系从土壤中吸收污染物并将其转化为气态物质,从植物的地上释放到大气中,以减轻土壤污染。44 吸附法
4、处理污染地下水的特点:可有效实现对水的多种净化功能;吸附过程可以有效捕集浓度很低的物质;吸附剂可重复使用,结合吸附剂的再生可回收有用物质;进水的预处理要求较严,运行费用也较高,因此主要用于污染地下水的深度处理单元。45 水中胶体颗粒物吸附可分为非专属吸附和专属吸附。非专属吸附由表面能引起的表面吸附(物理吸附);由胶体电荷引起的对反离子的吸附,溶液中的离子与已被吸附的离子可以相互交换(离子交换吸附)。专属吸附:由胶体表面化学作用引起的(化学吸附)。46 物理吸附的吸附剂与吸附质之间的作用力为范德华力,吸附热较小,在较低的温度下就可进行。 被吸附的物质由于分子热运动会脱离吸附剂表面而解吸。没有特定
5、的选择性。可以是单分子层吸附,也可以是多分子层吸附,吸附过程的主要影响因素是吸附剂的比表面积。离子吸附的吸附剂与吸附质之间的作用力为静电引力,是可逆反应,能够迅速达到平衡,以等电荷的关系进行,不受温度的影响,交换方向受离子浓度的影响。化学吸附的吸附剂与吸附质之间的作用力为化学键力,吸附热较大,具有选择性,一种吸附剂只能对一种或几种吸附质发生吸附作用,且只能形成单分子层吸附。当吸附的化学键力较大时,吸附反应为不可逆的过程。47 在移动床的吸附过程中,地下水从吸附柱底部进入,流经吸附剂层被净化后由柱顶排出。与此同时,定期从柱底部排除最先接近饱和的那部分吸附剂(约占吸附柱总炭量的5%20%),并将新
6、鲜或再生后的等量吸附剂从柱顶加入。吸附剂在吸附柱中呈间歇移动状态。48 离子交换树脂具有立体网状结构,按其孔隙特征,可分凝胶型和大孔型。凝胶型树脂的高分子骨架较适合用于吸附无机离子,而不能吸附大分子有机物质。49 离子交换树脂的化学结构可分为不溶性树脂母体和活性基团两部分。50 离子交换树脂的基本类型:()强酸性阳离子树脂含有大量的强酸性基团,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。()弱酸性阳离子树脂含弱酸性基团能在
7、水中离解出H+ 而呈酸性。树脂离解后余下的负电基团能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH514)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。(3)强碱性阴离子树脂含有强碱性基团,能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。强碱性阴离子树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。() 弱碱性阴离子树脂含有弱碱性基团,在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的
8、阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH19)下工作。可用Na2CO3、NH4OH进行再生。() 离子树脂的转型。在实际使用上,常将以上树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子
9、,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。51 沉淀的类型: 1. 自由沉淀:颗粒在沉淀过程中呈离散状态,互不干扰,其形状、尺寸、密度等均不改变,下沉速度恒定。悬浮物浓度不高且无絮凝性时常发生这类沉淀。2. 絮凝沉淀:当水中悬浮物浓度不高,但有絮凝性时,在沉淀过程中,颗粒互相凝聚其粒径和质量增大,沉淀速度加快。3. 成层沉淀:悬浮物浓度较高(5000mg/L以上)时,每个颗粒下沉都受到周围其他颗粒的干扰,颗粒互相牵扯形成网状
10、的“絮毯”整体下沉,颗粒群与澄清水层之间存在明显的界面。沉淀速度就是界面下移的速度。4. 压缩沉淀:悬浮物浓度很高,颗粒互相接触,互相支承时,在上层颗粒的重力作用下,下层颗粒间的水被挤出,污泥层被压缩。52 根据斯托克斯公式简述颗粒沉速的控制因素。答: 颗粒沉速的决定因素是s-l,当s大于l时,s-l为正值,颗粒以u下沉;当s与l相等时,u = 0,颗粒在水中呈随机悬浮状态,这类颗粒如采用沉淀处理,必须采用絮凝沉淀或气浮法;当s-l为负值时,u亦为负值,颗粒以u上浮,可用气浮法去除。 u与颗粒直径d的平方成正比,因此增加颗粒直径有助于提高沉淀速度(或上浮速度),提高去除效果。 u与液体的黏度成
11、反比,随水温上升而下降。即沉速受水温影响,水温上升,沉速增大。53 抽出处理技术的重力分离法中,沉淀池可以分为平流式沉淀池、竖流式沉淀池、辐流式沉淀池和斜板(管)式沉淀池四种。54 斜板(管)式沉淀池用平板把沉淀池的沉降空间分成若干个薄层,这时沉降高度显著缩短,处理效果明显提高。55 在利用竖流式沉淀池处理污染地下水时,地下水采用中心入流、周边溢流的方式,水流方向与颗粒的沉降方向相反,产生的污泥借静水压力由排泥管排出。56 膜分离技术:利用某种特殊的半透膜对液体中的不同成分进行选择性分离、浓缩或提纯的技术方法。在膜分离中,溶质透过膜的过程称为渗析,溶剂透讨膜的过程称为渗透。57 扩散渗析:在膜
12、两侧溶液的浓度差(浓度梯度)所产生的传质推动力的作用下,溶质由高浓度的溶液主体透过半透膜,向膜另一侧的低浓度溶液迁移扩散的过程或现象。58 扩散渗析过程可自发进行的条件是:具备浓度差和膜的选择性透过。其分离速度随被分离组分在膜两侧浓度差的降低而降低,当膜两侧的被分离组分浓度达到平衡时,渗析过程便停止进行。59 以阳离子渗析膜为例,简述扩散渗析的基本原理:以选择性阳离子渗析膜将容器分隔为渗析液室和扩散液室,接受液为纯水;渗析液与接受液在膜的两侧逆向流动。由于选择性阳渗析膜只允许阳离子透过,当含有A+、B-组分的渗析液进人渗析液室并与渗析膜M接触时,在膜两侧A+组分浓度差的推动下,A+组分不断地透
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地下水 环境工程 复习题
限制150内