大学物理答案第五版马文蔚改编.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《大学物理答案第五版马文蔚改编.doc》由会员分享,可在线阅读,更多相关《大学物理答案第五版马文蔚改编.doc(156页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流大学物理答案第五版马文蔚改编.精品文档.面向 21 世纪课程教材学习辅导书物理学(第五版)习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材物理学(第五版)一书中的习题而作的分析与解答。与上一版相比,本书增加了选择题,更换了约25的习题。所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的非大学物理课程教学基本要求(讨论稿)中全部核心内容,并选有少量扩展内容的习题;所选习题尽可能突出基本训练和联系工程实际。此外,为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法,本
2、书还为力学、电磁学、波动过程和光学热物理、相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法,以期帮助学生启迪思维,提高运用物理学的基本定律来分析问题和解决问题的能力。物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的,解题之前必须对所研究的物理问题建立一个清晰的图像,从而明确解题的思路。只有这样,才能在解完习题之后留下一些值得回味的东西,体会到物理问题所蕴含的奥妙和涵义,通过举一反三,提高自己分析问题和解决问题的能力。有鉴于此,重分析、简解答的模式成为编写本书的指导思想。全书力求在分析中突出物理图像,引导学生以科学探究的态度对待物理习题,初步培养学生“即物穷理”的精神
3、,通过解题过程体验物理科学的魅力和价值,尝试“做学问”的乐趣。因此对于解题过程,本书则尽可能做到简明扼要,让学生自己去完成具体计算,编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助。本书采用了1996 年全国自然科学名词审定委员会公布的物理学名词和中华人民共和国国家标准GB31003102 -93 中规定的法定计量单位。本书由马文蔚教授主编,由殷实、沈才康、包刚、韦娜编写,西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见,在此,编者致以诚挚的感谢。由于编者的水平有限,敬请读者批评指正。编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动
4、学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科,它研究物质运动的各种基本规律由于不同运动形式具有不同的运动规律,从而要用
5、不同的研究方法处理力学是研究物体机械运动规律的一门学科,而机械运动有各种运动形态,每一种形态和物体受力情况以及初始状态有密切关系掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础但仅仅记住一些公式是远远不够的求解一个具体物理问题首先应明确研究对象的运动性质;选择符合题意的恰当的模型;透彻认清物体受力和运动过程的特点等等根据模型、条件和结论之间的逻辑关系,运用科学合理的研究方法,进而选择一个正确简便的解题切入点,在这里思路和方法起着非常重要的作用1正确选择物理模型和认识运动过程力学中常有质点、质点系、刚体等模型每种模型都有特定的含义,适用范围和物理规律采用何种模型既要考虑问题
6、本身的限制,又要注意解决问题的需要例如,用动能定理来处理物体的运动时,可把物体抽象为质点模型而用功能原理来处理时,就必须把物体与地球组成一个系统来处理再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说,必须把它视为刚体,并用角量和相应规律来进行讨论在正确选择了物理模型后,还必须对运动过程的性质和特点有充分理解,如物体所受力(矩)是恒定的还是变化的;质点作一般曲线运动,还是作圆周运动等等,以此决定解题时采用的解题方法和数学工具2.叠加法叠加原理是物理学中应用非常广泛的一条重要原理,据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成例如质点作一般平面运动时,通常可以看成是由两个相互垂
7、直的直线运动叠加而成,而对作圆周运动的质点来说,其上的外力可按运动轨迹的切向和法向分解,其中切向力只改变速度的大小,而法向力只改变速度的方向对刚体平面平行运动来说,可以理解为任一时刻它包含了两个运动的叠加,一是质心的平动,二是绕质心的转动运动的独立性和叠加性是叠加原理中的两个重要原则,掌握若干基本的简单运动的物理规律,再运用叠加法就可以使我们化“复杂”为“简单”此外运用叠加法时要注意选择合适的坐标系,选择什么样的坐标系就意味着运动将按相应形式分解在力学中,对一般平面曲线运动,多采用平面直角坐标系,平面圆周运动多采用自然坐标系,而对刚体绕定轴转动则采用角坐标系等等叠加原理在诸如电磁学,振动、波动
8、等其他领域内都有广泛应用,是物理学研究物质运动的一种基本思想和方法,需读者在解题过程中不断体会和领悟3.类比法有些不同性质运动的规律具有某些相似性,理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性而且还应在学习中善于发现并充分利用这种相似性,以拓宽自己的知识面例如质点的直线运动和刚体绕定轴转动是两类不同运动,但是运动规律却有许多可类比和相似之处,如 与 与 其实它们之间只是用角量替换了相应的线量而已,这就可由比较熟悉的公式联想到不太熟悉的公式这种类比不仅运动学有,动力学也有,如 与 与 与可以看出两类不同运动中各量的对应关系十分明显,使我们可以把对质点运动的分析方法
9、移植到刚体转动问题的分析中去当然移植时必须注意两种运动的区别,一个是平动一个是转动,状态变化的原因一个是力而另一个是力矩此外还有许多可以类比的实例,如万有引力与库仑力、静电场与稳恒磁场,电介质的极化与磁介质的磁化等等只要我们在物理学习中善于归纳类比,就可以沟通不同领域内相似物理问题的研究思想和方法,并由此及彼,触类旁通4微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算,在力学中较为突出,也是初学大学物理课程时遇到的一个困难要用好微积分这个数学工具,首先应在思想上认识到物体在运动过程中,反映其运动特征的物理量是随时空的变化而变化的一般来说,它们是时空坐标的函数运用微积分可求得
10、质点的运动方程和运动状态这是大学物理和中学物理最显著的区别例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数另外对物理量数学表达式进行合理变形就可得出新的物理含义如由,借助积分求和运算可求得在t1 -t2 时间内质点速度的变化;同样由也可求得质点的运动方程以质点运动学为例,我们可用微积分把运动学问题归纳如下:第一类问题:已知运动方程求速度和加速度;第二类问题:已知质点加速度以及在起始状态时的位矢和速度,可求得质点的运动方程在力学中还有很多这样的关系,读者不妨自己归纳整理一下,从而学会自觉运用微积分来处理物理问题,运用时有以下几个问题需要引起大家的关注:(1) 运用微积分的物理条
11、件在力学学习中我们会发现,和等描述质点运动规律的公式,只是式和式在加速度为恒矢量条件下积分后的结果此外,在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题,而在大学物理中则主要研究在变力和变力矩作用下的力学问题,微积分将成为求解上述问题的主要数学工具(2) 如何对矢量函数进行微积分运算我们知道很多物理量都是矢量,如力学中的r、v、a、p 等物理量,矢量既有大小又有方向,从数学角度看它们都是“二元函数”,在大学物理学习中,通常结合叠加法进行操作,如对一般平面曲线运动可先将矢量在固定直角坐标系中分解,分别对x、y 轴两个固定方向的分量(可视为标量)进行微积分运算,最后再通过叠加法求得
12、矢量的大小和方向;对平面圆周运动,则可按切向和法向分解,对切线方向上描述大小的物理量a、v、s 等进行微积分运算(3) 积分运算中的分离变量和变量代换问题以质点在变力作用下作直线运动为例,如已知变力表达式和初始状态求质点的速率,求解本问题一条路径是:由F m a 求得a的表达式,再由式dv adt 通过积分运算求得v,其中如果力为时间t 的显函数,则a a(t),此时可两边直接积分,即;但如果力是速率v 的显函数,则a a(v),此时应先作分离变量后再两边积分,即;又如力是位置x 的显函数,则aa(x),此时可利用得,并取代原式中的dt,再分离变量后两边积分,即, 用变量代换的方法可求得v(x
13、)表达式,在以上积分中建议采用定积分,下限为与积分元对应的初始条件,上限则为待求量5.求解力学问题的几条路径综合力学中的定律,可归结为三种基本路径,即(1) 动力学方法:如问题涉及到加速度,此法应首选运用牛顿定律、转动定律以及运动学规律,可求得几乎所有的基本力学量,求解对象广泛,但由于涉及到较多的过程细节,对变力(矩)问题,还将用到微积分运算,故计算量较大因而只要问题不涉及加速度,则应首先考虑以下路径(2) (角)动量方法:如问题不涉及加速度,但涉及时间,此法可首选(3) 能量方法:如问题既不涉及加速度,又不涉及时间,则应首先考虑用动能定理或功能原理处理问题当然对复杂问题,几种方法应同时考虑此
14、外,三个守恒定律(动量守恒、能量守恒、角动量守恒定律)能否成立往往是求解力学问题首先应考虑的问题总之应学会从不同角度分析与探讨问题以上只是原则上给出求解力学问题一些基本思想与方法,其实求解具体力学问题并无固定模式,有时全靠“悟性”但这种“悟性”产生于对物理基本规律的深入理解与物理学方法掌握之中,要学会在解题过程中不断总结与思考,从而使自己分析问题的能力不断增强第一章质点运动学1 -1质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t t)时间内的位移为r, 路程为s, 位矢大小的变化量为r ( 或称r),平均速度为,平均速率为(1) 根据上述情况,则必有()(A) r=
15、 s = r(B) r s r,当t0 时有dr= ds dr(C) r r s,当t0 时有dr= dr ds(D) r s r,当t0 时有dr= dr = ds(2) 根据上述情况,则必有()(A) = ,= (B) , (C) = , (D) ,= 分析与解(1) 质点在t 至(t t)时间内沿曲线从P 点运动到P点,各量关系如图所示, 其中路程s PP, 位移大小rPP,而r r-r表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能)但当t0 时,点P无限趋近P点,则有drds,但却不等于dr故选(B)(2) 由于r s,故,即但由
16、于drds,故,即由此可见,应选(C)1 -2一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即(1);(2);(3);(4)下述判断正确的是()(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解故选(D)1 -3质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, a表示切向加速度对
17、下列表达式,即(1)d v /dt a;(2)dr/dt v;(3)ds/dt v;(4)d v /dta下述判断正确的是()(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解表示切向加速度a,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度a因此只有(3) 式表达是正确的故选(D)1 -4一个质点在做圆周运动时,则有()(A) 切向加速度一定改变,法向加速度也改变(
18、B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量a起改变速度大小的作用,而法向分量an起改变速度方向的作用质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的至于a是否改变,则要视质点的速率情况而定质点作匀速率圆周运动时, a恒为零;质点作匀变速率圆周运动时, a为一不为零的恒量,当a改变时,质点则作一般的变速率圆周运动由此可见,应选(B) *1 -5如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v
19、0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作()(A) 匀加速运动, (B) 匀减速运动, (C) 变加速运动,(D) 变减速运动, (E) 匀速直线运动,分析与解本题关键是先求得小船速度表达式,进而判断运动性质为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为,其中绳长l 随时间t 而变化小船速度,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为,方向沿x 轴负向由速度表达式,可判断小船作变加速运动故选(C)讨论有人会将绳子速率v0按x、y 两个方向分解,则小船速度,这样做对吗?1 -6已知质点沿x 轴作直线运动,其运动方
20、程为,式中x 的单位为m,t 的单位为 s求:(1) 质点在运动开始后4.0 s内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等质点在t 时间内的位移x 的大小可直接由运动方程得到:,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了为此,需根据来确定其运动方向改变的时刻tp ,求出0tp 和tpt 内的位移大小x1 、x2 ,则t 时间内的路程,如图所示,至于t 4.0 s 时质点速度和加速度可用和两式计算解(1)
21、质点在4.0 s内位移的大小 (2) 由 得知质点的换向时刻为 (t0不合题意)则所以,质点在4.0 s时间间隔内的路程为 (3) t4.0 s时1 -7一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示设t0 时,x0试根据已知的v-t 图,画出a-t 图以及x -t 图分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动)加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线又由速度的定义可知,x-t 曲线的斜率为速度
22、的大小因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的xt 图为t 的二次曲线根据各段时间内的运动方程xx(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为 (匀加速直线运动) (匀速直线运动) (匀减速直线运动)根据上述结果即可作出质点的a-t 图图(B)在匀变速直线运动中,有由此,可计算在02和46时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作02和46时间内的x -t 图在24时间内, 质点是作的匀速直线运动, 其x -t 图是斜率k20的一段直线图(c)1 -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 答案 第五 马文 改编
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内