大型发电厂和变电站接地网状态评估7230255.doc
《大型发电厂和变电站接地网状态评估7230255.doc》由会员分享,可在线阅读,更多相关《大型发电厂和变电站接地网状态评估7230255.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流大型发电厂和变电站接地网状态评估7230255.精品文档.大型发电厂和变电站接地网状态评估目 录一 概 述1.1 接地网状态评估目的1.2 变电站接地网状态评估的具体内容1.2.1接地网特性参数(接地阻抗、地线分流、跨步电压和接触电压)实测1.2.2 设备接地引下线与主接地网连接情况及接地网完整性测试1.23 接地网开挖检查和接地导体腐蚀性诊断1.2.4 变电站站址土壤电阻率测试和土壤结构分析1.2.5 变电站接地网状态数值评估1.3 需要提供的系统参数二 接地网特性参数测量2.1试验方法2.1.1 接地电阻测试2.1.2 变电站进线避雷线(
2、包括OPGW光纤地线)对测试电流分流测量2.1.3 站内接触电压的测量2.1.4 跨步电压的测量三 设备接地引下线与主接地网连接情况测试四 接地网开挖检查和接地导体腐蚀性诊断4.1 地网开挖目的4.2地网检查步骤及试验方法4.2.1 开挖检查4.2.2 开挖要求4.2.3 检查项目4.2.4 取样办法4.2.5 检查方法4.3 地网腐蚀情况判定标准五 站址土壤电阻率测试和土壤结构分析5.1 试验目的5.2 测量原理和方法5.3 测量结果和结论六 基于CDEGS软件的变电站接地网状态数值评估6.1 前言6.1.1 CDEGS软件的简介6.1.2 CDEGS软件在变电站接地网状态数值评估中的应用6
3、.2 接地网接地阻抗仿真计算与测量结果的比对验证6.2.1 接地网接地阻抗仿真计算6.2.2 仿真计算与测量结果的比对验证6.3 单相接地短路电流计算6.3.1 调度短路电流计算结果6.3.2 进站故障电流在出线地线的分流计算结果6.3.3 变电站母线单相接地故障时站内入地电流选取6.4 变电站发生单相接地故障时地网导体电位升高(GPR)6.5 变电站发生单相接地故障时跨步电压和接触电压6.5.1 典型的接触电势和跨步电势的三维图6.5.2 接触电势和跨步电势的允许值计算6.5.3 发生单相接地故障时,跨步电压分布的计算结果及分析6.5.4 发生单相接地故障时,接触电压分布的计算结果及分析七
4、地网状态评估结论7.1 土壤结构7.2 接地阻抗7.3 单相接地故障电流及其分布7.4 地表电位分布7.5 跨步电压、接触电压7.6 电气设备接地引下线与主地网连接情况7.7 地网腐蚀情况7.8 接地网状态的综合评价一 概 述1.1 接地网状态评估目的大型电厂和变电站的接地网是保证电力系统安全可靠运行、保障运行人员安全的重要措施之一。它为大型电厂和变电站内各种电气设备提供公共参考地、系统接地故障时快速泄放故障电流以及改善变电站地电位分布。随着电网的进一步建设和改造,接地网的安全问题越来越突出,开展变电站接地网状态评估的必要性随之而来。大型电厂和变电站接地网状态评估工作主要是结合现场测试和理论计
5、算,准确给出接地网入地故障电流、接地阻抗、接触电压、跨步电压、地网电位分布、地网完整性、地网金属导体腐蚀情况等现时状态,通过以上实测和计算相结合的方法分析接地网的安全性。表征变电站接地网状态的主要参数包括接地阻抗、接触电压、跨步电压、地网电位分布及地网的完整性等,对变电站接地系统进行状态评估主要是对这些参数进行测量和分析,然而以上参数的测量和评估是一个相当复杂的问题,受到多方面因素的影响,它不仅与接地体本身的大小、形状有关,还受到周围土壤中的金属物质、土壤电阻率均匀性的影响。由于对整个变电站接地网评估时单纯使用测量的方法工作量太大,不可能将站内所有位置的参数都测出来,因此采用主要借助于加拿大S
6、ES公司的CDEGS软件(电流分布、电磁干扰、接地和土壤结构分析)的数值分析方法以有效地弥补测量存在的缺陷和不足,该软件是目前世界上电磁干扰分析、接地系统研究和设计领域通用性最强,功能最强大的软件包,在国内外的多年应用实践证明,该软件已经成为接地网状态评估、设计和降阻改造的科学可靠工具。在运用测量结果验证采用基于CDEGS软件的数值分析方法的可信性后,结合接地网安全性限值的分析,可以通过数值方法完成变电站接地网的全面状态评估。1.2 变电站接地网状态评估的具体内容1.2.1 大型电厂和变电站接地网特性参数(接地阻抗、地线分流、跨步电压和接触电压)的实测结合变电站竣工设计图纸和后期改造记录确认变
7、电站地网结构现状,采用类工频测试方法(接近50Hz的类工频),通过对出线避雷线(包括OPGW光纤地线)、出线电缆外皮和接地的主变中性点分流测量并进行处理,测量出带出线避雷线(包括OPGW光纤地线)的运行变电站地网工频特性参数(接地阻抗、地线分流、跨步电压和接触电压)。1.2.1.1 地网接地阻抗测试根据DL/T 4752006接地装置特性参数测量导则和GB/T17949.12000接地系统的土壤电阻率、接地阻抗和地面电位测量导则的要求,采用类工频(接近50Hz的类工频)小电流法测量变电站接地阻抗。1.2.1.2 出线地线分流测量向地网注入类工频电流,测量出线地线(如避雷线、OPGW、耦合地线等
8、)、出线电缆外皮及变压器接地的中性点流出的电流值,同时记录注入电流和各分流电流的波形,计算与注入电流的相角差,便于更准确地确定分流系数。1.2.1.3 地网跨步电压、接触电压实测依据DL/T 4752006接地装置特性参数测量导则、GB/T17949.12000接地系统的土壤电阻率、接地阻抗和地面电位测量导则测量变电站有代表性点的跨步电压US和接触电压UT。依据DL/T 6211997交流电气装置的接地、GB 501502006电气设备安装工程 电气设备交接试验标准,参照IEEE std2000交流变电站接地安全性导则确定变电站跨步电压US和接触电压UT的限值。判断实测的跨步电压US和接触电压
9、UT是否超过变电站跨步电压US和接触电压UT的限值。1.2.2 设备接地引下线与主接地网连接情况及接地网完整性测试按照DL/T 4752006接地装置特性参数测量导则和Q/CSG 1 0007-2004电力设备预防性试验规程的有关要求进行,判断设备接地引下线与主接地网连接情况及接地网完整性是否良好。1.2.3 接地网开挖检查和接地导体腐蚀性诊断接地网导体及接地引线的腐蚀、甚至断裂,将使接地网的电气连接性能变坏、接地电阻增高。若遇接地短路故障,将造成接地网本身局部电位差和接地网电位异常增加,除给运行人员带来威胁外,还可能因反击或电缆外皮环流使得二次设备的绝缘遭到破坏,严重者可能导致监测或控制设备
10、发生误动或拒动而扩大事故。接地系统状态评估的其中一项重要内容就是诊断接地网的腐蚀状况,判断接地系统是否满足安全运行要求,是否需要改造。接地网导体腐蚀情况诊断可通过以下几个途径:(1)导通性测试。在电气完成性测试中,发现接地引下线断裂或地网金属导体断裂,需开挖确认。(2)场区地表电位梯度测试。发现场区地表电位梯度曲线有突变点,或局部波动较大,则可能存在接地系统状况可能不良或存在缺陷,需要开挖确认。(3)按运行年限有针对性地开挖检查。对运行时间达到一定年限(如10年及以上)的变电站接地网,建议选择关注的点开挖。(4)利用发变电站接地系统腐蚀诊断系统。该系统是指在在电力系统正常运行的情况下,确定变电
11、站接地网的故障(包括断点及腐蚀)位置的准确、可靠和简单的诊断方法,即通过地网各引线间电气参数的测量值来确定地网的断点及腐蚀情况。该方法应用于现场的有重庆大学的接地网腐蚀诊断软件和清华大学的IntelliEDS,由腐蚀普查系统的测量系统和分析软件组成,适用于变电站地网设计和施工图纸完整的变电站。根据技术成熟程度和国内兄弟省份的经验,选择开挖检查结合地中导体腐蚀程度量化分析和土壤分析的方法进行接地导体腐蚀性诊断。1.2.4 大型电厂和变电站站址土壤电阻率测试和土壤结构分析大型电厂和变电站接地网的准确评估的基础是接地阻抗、土壤电阻率的测量及土壤电阻率的分层分析和计算。为了能更好地对变电站接地网进行分
12、析计算,需要了解变电站所在地域的土壤状况,分层土壤电阻率数据的详细测量是CDEGS软件的应用准确性的基础,而后者直接影响到地网状态评估工作的质量,因此土壤电阻率数据的准确性非常关键。采用四极法测量变电站站址的土壤电阻率随测量极间距变化的曲线,根据视在土壤电阻率现场基础测试数据,利用CDEGS软件,通过优化分析,反演得到土壤的实际分层结构模型。1.2.5 大型电厂和变电站接地网状态数值评估大型电厂和变电站接地网状态数值评估主要是基于CDEGS软件,根据实际接地系统的结构,采用测量分析得到的分层土壤模型,分析分层土壤模型下接地系统的电气参数。主要内容包括:(1)对运行变电站接地阻抗测试结果以及分流
13、对运行变电站接地阻抗测试结果的影响的影响进行详细计算研究,通过软件计算和实测结果对照,给出变电站接地阻抗值。(2)确定变电站最大入地故障电流。变电站最大入地故障电流是关乎变电站系统安全指标的重要参数,对于运行中的变电站,当变电站发生接地短路,一部分短路电流经接地网入地,另一部分经由与地网相连的出线地线(如避雷线、OPGW、耦合地线等)、出线电缆外皮及变压器接地的中性点流回系统。在考虑系统结构,用CDEGS软件计算系统的分流系数Kf后,即可根据设计时的总故障电流求出。在计算分流系数Kf前,需确定的影响因素有:(a)与地网出线地线回数,出线地线与杆塔的是否有金属连接方式,以及该杆塔的接地电阻值;(
14、b)出线电缆回数、电缆的参数;(c)变电站地网的接地电阻值;(d)与被评估变电站直接相连的对侧各电压等级变电站地网接地电阻值;(e)变电站所处位置土壤结构;(f)变压器中性点接地方式。(3)以整个变电站场区为研究对象,计算实际接地系统在单相接地短路故障情况下,变电站地网接地导体的电位升高,是否满足二次设备安全的要求。(4)计算变电站跨步电压US和接触电压UT分布情况,对比测试结果以及跨步电压US和接触电压UT的限值,判断变电站US、UT的分布情况,分析和评估在地表产生的接触电压和跨步电压是否满足人身安全要求。1.3 需要提供的系统参数以500kV砚都变电站为例,表一为广东省电力调度中心提供的5
15、00kV砚都变电站在500kV侧或220kV侧发生单相接地短路故障时主变、500kV线路和220kV线路各支路提供的入地短路电流的计算结果。在2009年6月运行方式下核算的砚都变电站500kV和220kV母线单相接地短路电流分别为37.90kA和16.68kA。表1-1 500kV砚都变电站单相入地短路电流计算数据(2009年6月运行方式)故障类型系统部分流经线路的A相短路电流(kA)支路名称各支路提供的A相短路电流(kA)在500kV出线处发生A相故障500kV线路35.672560.1782砚花甲3.9157.6砚花乙3.9157.6砚西甲7.7250.3砚西乙7.7450.3蝶砚甲2.9
16、562.5蝶砚乙2.9562.5砚肇甲3.6482.5砚肇乙3.6482.5主变2.3640.52变2.3640.5220kV线路4.731339.1045砚东甲线0.8443.2砚端甲0.7535.3砚端乙0.7535.3砚珠甲线1.4444.8砚兴线0.6646.2砚荷甲0.188.2砚荷乙0.188.2在220kV出线处发生A相故障500kV线路4.714055.0611砚花甲0.5537.1砚花乙0.5537.1砚西甲1.60-10.4砚西乙1.61-10.4蝶砚甲0.5767.0蝶砚乙0.5767.0砚肇甲1.63123.1砚肇乙1.63123.1主变4.7225.12变4.7225
17、.1220kV线路12.245348.7983砚东甲线3.7951.2砚端甲1.9746.6砚端乙1.9746.6砚珠甲线2.6949.9砚兴线1.185951.839砚荷甲0.329638.105砚荷乙0.329638.105500kV砚都变电站的500kV和220kV线路的参数如表1-2所示。表1-2 砚都变电站500kV和220kV出线的线路参数序号线路名称长度(km)平均档距(m)终端塔型号导线规范地线规范对侧变电站名对侧变电站接地阻抗值(W)1500kV砚花甲138.98450SJCD274-26/28/29/304ACSR-720/50LGJX-150/35LGJ-150/35花都
18、0.4502500kV砚花乙3500kV砚西甲46.423407SJCD274-24/25/264LGJ-400/35,ACSR-720/50LGJX-150/35JLB2-40-7西江0.2064500kV砚西乙5500kV蝶砚甲148.49464SJDG374-25/29/32/334LGJX-630/50LGJX-150/35LGJ-150/35蝶岭0.4556500kV蝶砚乙7500kV砚肇甲1.34335SJCD274-22/23/24/254ACSR-720/50LGJ-95/55JLB2-40-7肇庆换流站0.4798500kV砚肇乙9220kV砚东甲15.0326GUT8-23
19、2*LGJ-300LGJ-95/55东岸0.2110220kV砚端甲31.8388GUT8-202*LGJ-240GJ-50端州0.49011220kV砚端乙12220kV砚珠甲16.0364GUT8-232*LGJ-240LGJ-95/55珠山0.48313220kV砚兴线54.0390GTU9-172*LGJQ-300LGJ-95/55兴瑶0.46814220kV砚荷甲44.0400SJ633-212*LGJ-300GJ-50荷村0.48015220kV砚荷乙二 接地网特性参数测量2.1 试验方法2.1.1 接地电阻测试根据变电站主地网现场地形情况和试验条件,选择远离夹角法进行测量。采用类
20、工频(接近50Hz的类工频)小电流法测量,所加测试电流310A。试验原理如图2-1所示。8000型类工频小电流接地网测试系统见图2-2。由于采用远离夹角法,测量结果需要修正,根据DL47592接地装置工频特性参数的测量导则有关公式计算,接地网接地电阻测量结果应为测量值乘以修正系数1/0.8061。由于运行要求,所有运行的500kV和220kV出线线路的避雷线无法与接地网断开联结达到隔离的目的,本次测试将在出线构架上带着避雷线和OPGW光纤地线的运行状态下进行测量,并采用对变电站内500kV场地和220kV场地与出线金属构架相连的所有金属构架、主变中性点和500kV出线杆塔进行分流测量并进行处理
21、的方法尝试消除或减少避雷线和OPGW光纤地线等对测量结果的影响,测试结果供参考。S1:开关 A:选频电流表 V:高内阻电压表图2-1 类工频小电流法试验原理接线图图2-2 8000型类工频小电流接地网测试系统2.4.2 变电站进线避雷线(包括OPGW光纤地线)对测试电流分流测量选择45Hz频率,施加测试电流,利用柔性罗哥夫斯基线圈测量与500kV和220kV出线构架相连通的所有金属构架及变压器中性点和500kV出线杆塔塔脚的分流,得到分流系数,以便于剔除分流因素对测量结果的影响,得到较为真实的变电站地网接地电阻值。2.4.3 站内接触电压的测量在变电站中可能有接地短路电流流过的电力设备外壳或构
22、架上测量接触电压,试验原理如图2-4所示。将电流注入点引至待测设备外壳或构架上,高内阻电压表V1的一端接至地面上离设备外壳或构架水平距离1.0m的测量极上,电压测量极采用22圆钢打入地下0.5m,并保证钢钎紧密插入土壤,电压表的另一端接至设备外壳或构架离地面1.8m处。加测量电流I,读取电压表指示值可测出通过主地网电流I对应的接触电压UT。站内接触电压与通过地网流入土壤的电流值成正比。实测的接触电压尚需按经接地网流入地中地最大短路电流Imax(取37.90kA)换算,接触电压的最大值为:UTjmax=UTImax/I图2-4 接触电压和跨步电压测试原理图2.4.4 跨步电压的测量在变电站中工作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大型 发电厂 变电站 接地 网状 评估 7230255
限制150内