大学物理习题集上习题解答.doc
《大学物理习题集上习题解答.doc》由会员分享,可在线阅读,更多相关《大学物理习题集上习题解答.doc(86页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流大学物理习题集上习题解答.精品文档.单元一 质点运动学(一)一、选择题1. 下列两句话是否正确: (1) 质点作直线运动,位置矢量的方向一定不变; 【 】 (2) 质点作园周运动位置矢量大小一定不变。 【 】2. 一物体在1秒内沿半径R=1m的圆周上从A点运动到B点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s,方向由A指向B; (B) 大小为2m/s,方向由B指向A; (C) 大小为3.14m/s,方向为A点切线方向; (D) 大小为3.14m/s,方向为B点切线方向。 3. 某质点的运动方程为x=3t-5t3+6(S
2、I),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X轴正方向;(B) 匀加速直线运动,加速度沿X轴负方向; (C) 变加速直线运动,加速度沿X轴正方向; (D)变加速直线运动,加速度沿X轴负方向4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s,瞬时加速率a=2 m/s2则一秒钟后质点的速度: 【 D 】 (A) 等于零(B) 等于-2m/s(C) 等于2m/s(D) 不能确定。5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。设该人以匀速度V0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C)
3、变加速运动;(D) 变减速运动; (E) 匀速直线运动。6. 一质点沿x轴作直线运动,其v-t曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s时,质点在x轴上的位置为 【 C 】(A) 0; (B) 5m; (C) 2m; (D) -2m; (E) -5m*7. 某物体的运动规律为,式中的k为大于零的常数。当t=0时,初速为v0,则速度v与时间t的函数关系是 【 C 】 (A) (B) (C) (D) 二、填空题1. 为某质点在不同时刻的位置矢量,和为不同时刻的速度矢量,试在两个图中分别画出和。2. 一质点从P点出发以匀速率1cm/s作顺时针转向的圆周运动,圆半径为1m,如图当它走过
4、2/3圆周时,走过的路程是; 这段时间平均速度大小为:;方向是与X正方向夹角3. 一质点作直线运动,其坐标x与时间t的函数曲线如图所示,则该质点在第3秒瞬时速度为零;在第3秒至第6秒间速度与加速度同方向。三、计算题1. 已知一质点的运动方程为分别以m和s为单位,求:(1) 质点的轨迹方程,并作图;(2) t=0s和t=2s时刻的位置矢量;(3) t=0s到t=2s质点的位移* (1)轨迹方程:; (2) ,(3) ,2. 一质点沿x轴作直线运动,其运动方程为x=3+5t+6t2-t3 (SI),求 (1) 质点在t=0时刻的速度; (2) 加速度为零时,该质点的速度。* 任一时刻的速度:,任一
5、时刻的加速度:时的速度:;当加速度为零:,速度:*3. 湖中一小船,岸边有人用绳子跨过高出水面h的滑轮拉船,如图所示。如用速度V0收绳,计算船行至离岸边x处时的速度和加速度。* 选取如图所示的坐标,任一时刻小船满足:,两边对时间微分方向沿着X轴的负方向。方程两边对时间微分:,方向沿着X轴的负方向。4. 质点沿X轴运动,其速度与时间的关系为v=4+t2 m/s,当t=3s时质点位于x=9m处,求质点的运动方程。当t=2s时,质点的位置在哪里?* 质点的位置满足:,由初始条件:t=3s时质点位于x=9m,得到c=-12,当t=2s时,质点的位置:*5. 质点沿X轴运动,其加速度和位置的关系是。如质
6、点在x=0处的速度为,求质点在任意坐标x处的速度。* 由速度和加速度的关系式:,两边积分,并利用初始条件:,得到质点在任意坐标x处的速度:单元一 质点运动学(二)一、 选择题1. 一质点在平面上运动,已知质点的位置矢量为 (a,b为常数)则质点作: 【 B 】 (A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动;(D) 一般曲线运动。2. 质点作曲线运动,表示位置矢量,S表示路程,at表示切向加速度,下列表达式中, 【 D 】(1) ; (2) ; (3) ; (4) 。 (A) 只有(1)、(2)是对的; (B) 只有(2)、(4)是对的; (C) 只有(2)是对的; (D)
7、 只有(3)是对的。3. 某人骑自行车以速率v向正西方向行驶,遇到由北向南刮的风 (风速大小也为v) 则他感到风是从 【 C 】 (A) 东北方向吹来;(B) 东南方向吹来; (C) 西北方向吹来;(D) 西南方向吹来。4. 在相对地面静止的坐标系内,A、B两船都以的速率匀速行驶,A船沿X轴正向,B船沿y轴正向,今在A船上设置与静止坐标系方向相同的坐标系(x,y方向单位矢量表示),那么从A船看B船它相对A船的速度(以为单位)为 【 B 】5. 一条河设置A, B两个码头,相距1 km,甲,乙两人需要从码头A到码头B,再由B返回,甲划船前去,船相对河水的速度4 km/h;而乙沿岸步行,步行速度也
8、为4 km/h,如河水流速为2 km/h,方向从A到B下述结论中哪个正确? 【 A 】 (A) 甲比乙晚10分钟回到A;(B) 甲和乙同时回到A; (C) 甲比乙早10分钟回到A;(D) 甲比乙早2分钟回到A二、填空题1. 在x,y面内有一运动质点其运动方程为 ,则t时刻其速度;其切向加速度;该质点运动轨迹是。2. 一质点作如图所示的抛体运动,忽略空气阻力。回答:(A) 标量值是否变化:变化;矢量值是否变化:不变;是否变化:变化 (B) 轨道最高点A的曲率半径,落地点B的曲率半径。3. 试说明质点作何种运动时,将出现下述各种情况 (1) :变速曲线运动 (2) :变速直线运动, 分别表示切向加
9、速度和法向加速度。4. 如图所示,小球沿固定的光滑的1/4圆弧从A点由静止开始下滑,圆弧半径为R,则小球在A点处的切向加速度,小球在B点处的法向加速度。5. 在一个转动的齿轮上,一个齿尖P做半径为R的圆周运动,其路程S随时间的变化规律为和b都是正的常量,则t时刻齿尖P的速度大小为:,加速度大小为:。6. 一物体在某瞬时,以初速度从某点开始运动,在时间内,经一长度为S的曲线路径后,又回到出发点,此时速度为,则在这段时间内: (1) 物体的平均速率是; (2) 物体的平均加速度是。7. 一质点沿半径为R的圆周运动,路程随时间的变化规律为式中b,c为大于零的常数,且。 (1) 质点运动的切向加速度:
10、;法向加速度:; (2) 质点经过时,。8. 质点沿半径R作圆周运动,运动方程为,则t时刻质点法向加速度大小,角加速度,切向加速度大小。9. 楔形物体A的斜面倾角为,可沿水平方向运动,在斜面上物体B沿斜面以相对斜面下滑时,物体A的速度为,如图,在固接于地面坐标oxy中,B的速度是 矢量式 分量式 ,三、计算题1. 如图,一质点作半径R=1m的圆周运动, t=0时质点位于A点,然后顺时针方向运动,运动方程求: (1) 质点绕行一周所经历的路程、位移、平均速度和平均速率;(2) 质点在1秒末的速度和加速度的大小。* (1) 质点绕行一周所需时间:,质点绕行一周所经历的路程:位移:;平均速度:平均速
11、率:(2) 质点在任一时刻的速度大小:加速度大小:质点在1秒末速度的大小: 加速度的大小:,2. 如图,飞机绕半径r=1km的圆弧在竖直平面内飞行,飞行路程服从的规律,飞机飞过最低点A时的速率,求飞机飞过最低点A时的切向加速度,法向加速度和总加速度。* 飞机的速率:,加速度:, 飞机飞过最低点A时的速率:,加速度:*3. 有架飞机从A处向东飞到B处,然后又向西飞回到A处。已知气流相对于地面的速率为u, AB之间的距离为,飞机相对于空气的速率v保持不变。(1) 如果u=0(空气静止),试证明来回飞行的时间为; (2) 如果气流的速度向东,证明来回飞行的时间为; (3) 如果气流的速度向北,证明来
12、回飞行的时间为* (1)如果:,飞机来回的速度均为v,来回的飞行时间:(2)如果气流的速度向东,飞机向东飞行时的速度:,飞机向西飞行时的速度:,来回飞行的时间:,(3)如果气流的速度向北,飞机向东飞行的速度:,飞机向西飞行的速度,来回飞行的时间:,4. 一粒子沿抛物线轨道运动。粒子速度沿X轴的投影为常数,等于。试计算粒子在处时,其速度和加速度的大小和方向。* 根据题意:,由得到:,速度的大小:,速度的方向:当时:,速度的方向:加速度大小:,方向沿Y轴方向。单元二 牛顿运动定律(一)一、 选择、填空题1. 如图所示,质量分别为20kg和10kg的两物体A和B,开始时静止在地板上。今以力F作用于轻
13、滑轮,设滑轮和绳的质量以及滑轮轴处摩擦可以忽略,绳子不可伸长,求F为下列各值时,物体A和B的加速度 (1) 96N (2) 196N (3) 394N(1) (2) (3) 提示:在不计滑轮质量时,两边绳子的张力相等,为F的1/2,以地面为参照系,分别列出两个物体的运动方程。2. 已知水星的半径是地球半径的0.4倍,质量为地球的0.04倍。设在地球上的重力加速度为g,则水星表面上的重力加速度为: 【 B 】 (A) 0.1g;(B) 0.25g;(C) 4g;(D) 2.5g3. 如果一个箱子与货车底板之间的静摩擦系数为,当这货车爬一与水平方向成q角的小山时,不致使箱子在底板上滑动的最大加速度
14、。4. 如图,在光滑水平桌面上,有两个物体A和B紧靠在一起。它们的质量分别mA=2kg和mB=1kg。今用一水平力F=3N推物体B,则B推A的力等于2N。如用同样大小的水平力从右边推A,则A推B的力等于1N5. 质量m为10kg的木箱放在地面上,在水平拉力F的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示。若已知木箱与地面间的摩擦系数为0.2,那么在t=4s时,木箱的速度大小为4m/s;在t=7s时,木箱的速度大小为2.5 m/s。( g=10 m/s2 )。6. 分别画出物体A、B、C、D的受力图,(1) 被水平力F压在墙上保持静止的两个方木块A和B;(2) 被水平力F拉着在水平
15、桌面上一起做匀速运动地木块C和D。7. 如图所示,用一斜向上的力(与水平成30),将一重为G的木块压靠在竖直壁面上,如果不论用怎样大的力F,都不能使木块向上滑动,则说明木块与壁面间的静摩擦系数的大小为 【 B 】8. 一小车沿半径为R的弯道作园运动,运动方程为(SI),则小车所受的向心力,(设小车的质量为m)。9. 质量为m的物体,在力Fx=A+Bt (SI)作用下沿x方向运动(A、B为常数),已知t=0时,则任一时刻:物体的速度表达式:物体的位移表达式:10. 一物体质量M=2kg,在合外力的作用下,从静止出发沿水平x轴作直线运动,则当t=ls时物体的速度。二、计算题1. 倾角为q的三角形木
16、块A放在粗糙地面上,A的质量为M,与地面间的摩擦系数为、A上放一质量为m的木块B,设A、B间是光滑的。(1) 作出A、B的示力图;(2) 求B下滑时,至少为多大方能使A相对地面不动。 * 解:研究对象为物体A和物体B,受力分析如图所示,选取斜面向下为坐标正方向,水平方向向右为坐标正方向,写出两个物体的运动方程物体B:和,物体A:和,两式消去T,将代入所以:*2. 将一质量为m的物体A,放在一个绕竖直轴以每秒n转的匀速率转动的漏斗中,漏斗的壁与水平面成角,设物体A与漏斗壁间的静摩擦系数为,物体A与转轴的距离为r,试证明物体与漏斗保持相对静止时,转速n的范围为:* 当时,物体有向下运动的趋势:当时
17、,物体有向上运动的趋势:3. 一根匀质链条,质量为m,总长度为L,一部分放在光滑桌面上,另一部分从桌面边缘下垂,长度为a,试求当链条下滑全部离开桌面时,它的速率为多少?(用牛二定律求解)。* 选取向下为坐标正方向,将整个链条视为一个系统,当链条下落距离x时,写出牛顿运动方程,当链条下滑全部离开桌面时,它的速率为4. 质量为m的子弹以速度水平射入沙土中,设子弹所受阻力与速度反向。大小与速度大小成正比,比例系数为k,忽略子弹的重力,求: (1) 子弹射入沙土后,速度的大小随时间变化的函数式 (2) 子弹进入沙土的最大深度。* 根据题意,阻力,写出子弹的运动微分方程:,应用初始条件得到:从变换得到:
18、,应用初始条件,两边积分得到,当子弹停止运动:,所以子弹进入沙土的最大深度:单元二 功和能(二)一、 选择、填空题1. 如图所示,子弹射入放在水平光滑地面上静止的木块而不穿出,以地面为参照系,指出下列说法中正确的说法是 【 C 】(A) 子弹的动能转变为木块的动能;(B) 子弹一木块系统的机械能守恒;(C) 子弹动能的减少等于子弹克服木块阻力所做的功;(D) 子弹克服木块阻力所做的功等于这一过程中产生的热。2. 一个半径为R的水平圆盘恒以角速度w作匀速转动,一质量为m的人要从圆盘边缘走到圆盘中心处,圆盘对他所做的功为: 【 D 】3. 对功的概念有以下几种说法: (1) 保守力作正功时,系统内
19、相应的势能增加; (2) 质点运动经一闭合路径,保守力对质点做的功为零; (3) 作用力和反作用力大小相等、方向相反,所以两者所做功的代数和必为零;在上述说法中: 【 C 】(A) (1)、(2)是正确的;(B) (2)、(3)是正确的;(C) 只有(2)是正确的;(D) 只有(3)是正确的。4. 质量为10 kg的物体,在变力F作用下沿X轴做直线运动,力随坐标X的变化如图,物体在x=0处速度为1m/s,则物体运动到x=16 m处,速度的大小为 【 B 】5. 有一人造地球卫星,质量为m,在地球表面上空2倍于地球半径R的高度沿圆轨道运行,用M、R、引力常数G和地球的质量M表示: (1) 卫星的
20、动能为; (2) 卫星的引力势能为。6原长为l0倔强系数为k的轻弹簧竖直挂起,下端系一质量为m的小球,如图所示。当小球自弹簧原长处向下运动至弹簧伸长为的过程中: (A) 重力做功:; (B) 重力势能的增量:。 (C) 弹性势能的增量:;(D) 弹性力所做的功:。7如图所示,质量m=2kg的物体从静止开始,沿1/4圆弧从A滑到B,在B处速度的大小为v=6m/s,已知圆的半径R=4m,则物体从A到B的过程中摩擦力对它所做的功。二、计算题1如图所示装置,光滑水平面与半径为R的竖直光滑半圆环轨道相接,两滑块A,B的质量均为m,弹簧的倔强系数为k,其一端固定在O点,另一端与滑块A接触。开始时滑块B静止
21、于半圆环轨道的底端,今用外力推滑块A, 使弹簧压缩一段距离x后再释放,滑块A脱离弹簧后与B作完全弹性碰撞,碰后B将沿半圆环轨道上升。升到C点与轨道脱离,OC与竖直方向成角,求弹簧被压缩的距离x。* 过程一,弹簧力做功等于物体A动能的增量:,得到:过程二,物体A和物体B发生弹性碰撞,动量守恒和动能守恒,得到:过程三,物体B做圆周运动,在C点脱离轨道满足的条件:,得到:根据动能定理:重力做的功等于物体B动能的增量:将和代入得到:*2. 设两粒子之间的相互作用力为排斥力f,其变化规律为,k为常数,r为二者之间的距离,试问: (1) f是保守力吗? 为什么? (2) 若是保守力,求两粒子相距为r时的势
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 习题集 习题 解答
限制150内