导数及其应用.doc
《导数及其应用.doc》由会员分享,可在线阅读,更多相关《导数及其应用.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流导数及其应用.精品文档.导数及其应用1、 应用导数解有关切线问题:(1)、过某点的切线不一定只有一条; 如:已知函数过点作曲线的切线,求此切线的方程(答:切点分别为(0,0),(3,18)。或)。 (2):设函数在上单调函数,则实数的取值范围_(答:);2、应用导数解函数的极值问题:(1)、3、应用导数解函数的最大值和最小值问题:(1)函数在0,3上的最大值、最小值分别是_(答:5;);(2)已知函数在区间1,2 上是减函数,那么bc有最_值_答:大,)(3)方程的实根的个数为_(答:1)(4)函数处有极小值10,则a+b的值为_(答:7)1
2、3、定积分:(1).直线和直线y=f(x)所围成的图形称为曲边梯形。推理与证明(1)、观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,则可得出一般结论: (3)类比平面内的直角三角形的性质猜想空间中的类似定理。演绎推理:数系的扩充与复数1、几个结论:(3)(4)(5)(6)计数原理、排列组合与二项式定理1、全错位法,n个编有号码1,2,3,n的元素,放入编有号码1,2,3,n的n个位置,并使元素编号与位置编号不同,则共有多少种放法?n=1时,有0种,n=2时有1种,n=3时,有2种,n=4时,有9种,n=5时,有44种,一般,1、排列组合应用
3、题的最基本的解法有:1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法。如:(1)用0,1,2,3,4,5这六个数字,可以组成无重复数字的四位偶数_156_个;(2)某班上午要上语、数、外和体育4门课,如体育不排在第一、四节;语文不排在第一、二节,则不同排课方案种数为_6_;先排第一节,再对第二节分类讨论。(3)四个不同的小球全部放入编号为1、2、3、4的四个盒中。恰有两个空盒的放法有84_种;甲球只能放入第2或3号盒,而乙球不能放入第4号盒的不同放法有_96_种。(1)分三步:第一步先选
4、两个空盒,第二步把四个球分成两组,第三步把分成的两组放入余下的两个空盒中。(2)(4)设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的5个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有_ 31 _从反面考虑,并用全错位法。2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。如(1)正方体的八个顶点中任取三个点为顶点作三角形,能构成多少个直角三角形。(2) 正方体的八个顶点中任取四个点为四面体的顶点,能构成多少个这样的四面体?(3)在平面直角坐标系中,由六个点(0,0),(1,2),(2,4),(6,3),(1,2),(2,1)可以确
5、定三角形的个数为_。15。注意有四点共线与三点共线。3)先选后排,注意分类讨论。选取问题先选后排法。如某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只测试,直到4只次品全测出为止,则最后一只次品恰好在第五次测试时,被发现的不同情况种数是_。常用技巧有:1)插空法(不相邻),捆绑法(相邻问题),(1)把4名男生和4名女生排成一排,女生要排在一起,不同的排法种数为_2880_;(2)某人射击枪,命中枪,枪命中中恰好有枪连在一起的情况的不同种数为_20_;先捆绑后插空。(3)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张
6、票具有连续的编号,那么不同的分法种数是_ 144 _连续编号有:(12)(23)(34)(45)(56),(4)3人坐在一排八个座位上,若每人的左右两边都有空位,则不同的坐法种数有_24_种;(5)某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同的插法种数为_ 42 _。2)插板法(可化为正整数解的问题),相同元素分组可采用隔板法。如(1)10个相同的球各分给3个人,每人至少一个,有多少种分发?每人至少两个呢?答 36,15 (2)某运输公司有7个车队,每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每
7、个车队至少抽1辆车,则不同的抽法有多少种?答 9个洞,插6块板, 3)等分法,如:5人站队,要求甲站在乙的前面,有多少种不同的站法?604)平均分配(n个元素平均分成m组)。要注意区分是平均分组还是非平均分组,平均分成n组问题别忘除以n!。如4名医生和6名护士组成一个医疗小组,若把他们分配到4所学校去为学生体检,每所学校需要一名医生和至少一名护士的不同选派方法有_种(答:37440);5)解排列组合问题的依据是:如(1)将5封信投入3个邮筒,不同的投法共有 243 种;(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 70 种;(3)从集合和中
8、各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是_ 23 _;(4)72的正约数(包括1和72)共有 12 个;(5)的一边AB上有4个点,另一边AC上有5个点,连同的顶点共10个点,以这些点为顶点,可以构成_ 90 _个三角形;按含A与不含A分类。CDCDE(6)(涂色问题:用分类讨论法)用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 480 种不同涂法;引伸练习:上题中变为如图A、B、C、D、E五块区域,又有多少种不同的涂法。分类法:分四类:(1)B、C同色,且A、D同色,(2)B、C同色,且A、D不同色,(3)B
9、、C不同色,且A、D同色,(4)B、C不同色,且A、D不同色,共1560。(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 .9 种;(8)是集合到集合的映射,且,则不同的映射共有 7 个;列表分类。(9)满足的集合A、B、C共有 组。6、(1)二项式定理:(a+b) =Ca+ Cab+ Cab+Cb nN,它共有n+1项,其中C(r=0,1,2n)叫做二项式系数,Cab叫做二项式的通项,用T表示,即通项为展开式的第r+1项,TCab,特别提醒:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数。如在的
10、展开式中,第项的二项式系数为,第项的系数为;而的展开式中的系数就是二项式系数;(2)当n的数值不大时往往借助杨辉三角直接写出各项的二项式系数;(3)审题时要注意区分所求的是项还是第几项?求的是系数还是二项式系数?如:(1)的展开式中常数项是_ _;(2)的展开式中的的系数为_ ;(3)数的末尾连续出现零的个数是_ 3个 _;(4)展开后所得的的多项式中,系数为有理数的项共有_ 7 _项;(5)若的值能被5整除,则的可取值的个数有_ 5 _个;(6)若二项式按降幂展开后,其第二项不大于第三项,则 的取值范围是 ;(7)函数的最大值是_ .(2)、在二项式定理中,对a,b取不同的值可推出许多常用的
11、式子:(1)(1x)=1+Cx+Cx+Cx+x (a=1,b=x)(2) C+ C+ C+C=2 (a=b=1)(3) C+ C+= C+=2 (a=1 b=-1)应用“赋值法”可求得二项展开式中各项系数和为、“奇数 (偶次)项”系数和为,以及“偶数 (奇次)项”系数和为。如(1)如果,则 ;(2)化简得 (3)已知,则等于_ ;(4),则_ _;(5)设,则_。(3)、杨辉三角:11(a+b)121 (a+b) 1331 (a+b)14641 (a+b)15101051 (a+b) 1615201561 (a+b)表中除1以外的其余各数都等于它肩上的两个数之和。当n的数值不大时往往借助杨辉三
12、角直接写出各项的二项式系数。(4)、二项式系数的性质:1)对称性:与首末两端“等距离”的两个二项式系数相等,即2)增减性与最大值:当r时,二项式系数C的值逐渐增大,当r时,C的值逐渐减小,且在中间取得最大值。当n为偶数时,中间一项的二项式系数取得最大值。当n为奇数时,中间两项的二项式系数相等并同时取最大值如(1)在二项式的展开式中,系数最小的项的系数为_ ;(2)在的展开式中,第十项是二项式系数最大的项,则_ 18 _。(5)、求二项式展开式中的系数绝对值最大的项常先判断系数的绝对值的单调性。求二项式展开式中的系数最大的项在上面的基础上再分析符号。设第项的系数最大,由不等式组确定。或由来确定。
13、如求的展开式中,系数的绝对值最大的项和系数最大的项。7、二项式定理的应用:二项式定理的主要应用有近似计算、证明整除性问题或求余数、应用其首尾几项进行放缩证明不等式。如(1)(0.998)5精确到0.001近似值为_0.990 _;(2)被4除所得的余数为_ _;(3)今天是星期一,10045天后是星期_ 二 _;(4)求证:能被64整除;(5)求证:6、(1)二项式定理:(a+b) =Ca+ Cab+ Cab+Cb nN,它共有n+1项,其中C(r=0,1,2n)叫做二项式系数,Cab叫做二项式的通项,用T表示,即通项为展开式的第r+1项,TCab,特别提醒:(1)项的系数与二项式系数是不同的
14、两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数。如在的展开式中,第项的二项式系数为,第项的系数为;而的展开式中的系数就是二项式系数;(2)当n的数值不大时往往借助杨辉三角直接写出各项的二项式系数;(3)审题时要注意区分所求的是项还是第几项?求的是系数还是二项式系数?如:(1)的展开式中常数项是_ _;(2)的展开式中的的系数为_ ;(3)数的末尾连续出现零的个数是_ 3个 _;(4)展开后所得的的多项式中,系数为有理数的项共有_ 7 _项;(5)若的值能被5整除,则的可取值的个数有_ 5 _个;(6)若二项式按降幂展开后,其第二项不大于第三项,则 的取值范围是 ;(7)函数的最
15、大值是_ .(2)、在二项式定理中,对a,b取不同的值可推出许多常用的式子:(1)(1x)=1+Cx+Cx+Cx+x (a=1,b=x)(2) C+ C+ C+C=2 (a=b=1)(3) C+ C+= C+=2 (a=1 b=-1)应用“赋值法”可求得二项展开式中各项系数和为、“奇数 (偶次)项”系数和为,以及“偶数 (奇次)项”系数和为。如(1)如果,则 ;(2)化简得 (3)已知,则等于_ ;(4),则_ _;(5)设,则_。(3)、杨辉三角:11(a+b)121 (a+b) 1331 (a+b)14641 (a+b)15101051 (a+b) 1615201561 (a+b)表中除1
16、以外的其余各数都等于它肩上的两个数之和。当n的数值不大时往往借助杨辉三角直接写出各项的二项式系数。(4)、二项式系数的性质:1)对称性:与首末两端“等距离”的两个二项式系数相等,即2)增减性与最大值:当r时,二项式系数C的值逐渐增大,当r时,C的值逐渐减小,且在中间取得最大值。当n为偶数时,中间一项的二项式系数取得最大值。当n为奇数时,中间两项的二项式系数相等并同时取最大值如(1)在二项式的展开式中,系数最小的项的系数为_ ;(2)在的展开式中,第十项是二项式系数最大的项,则_ 18 _。(5)、求二项式展开式中的系数绝对值最大的项常先判断系数的绝对值的单调性。求二项式展开式中的系数最大的项在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 及其 应用
限制150内