引用 引用 第六章 污水的好氧生物处理 活性污泥法.doc
《引用 引用 第六章 污水的好氧生物处理 活性污泥法.doc》由会员分享,可在线阅读,更多相关《引用 引用 第六章 污水的好氧生物处理 活性污泥法.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流引用 引用 第六章 污水的好氧生物处理 活性污泥法.精品文档.引用 引用 第六章 污水的好氧生物处理 活性污泥法引用清秋雨荷的引用第六章污水的好氧生物处理-活性污泥法引用lisuke的第六章污水的好氧生物处理-活性污泥法第1节基本概念一、活性污泥二、活性污泥法的基本流程三、活性污泥降解污水中有机物的过程一、图6-1)。污水和回流的活性污泥一起进入曝气池形成混合液。曝气池是一个生物反应器,通过曝气设备充人空气,空气中的氧溶人污水使活性污泥混合液产生好氧代谢反应。曝气设备不仅传递氧气进入混合液,且使混合液得到足够的搅拌而呈悬浮状态。这样,污水中的
2、有机物、氧气同微生物能充分接触和反应。随后混合液流人沉淀池,混合液中的悬浮固体在沉淀池中沉下来和水分离。流出沉淀池的就是净化水。沉淀池中的污泥大部分回流,称为回流污泥。回流污泥的目的是使曝气池内保持一定的悬浮固体浓度,也就是保持一定的微生物浓度。曝气池中的生化反应引起了微生物的增殖,增殖的微生物通常从沉淀池中排除,以维持活性污泥系统的稳定运行。这部分污泥叫剩余污泥。剩余污泥中含有大量的微生物,排放环境前应进行处理,防止污染环境。从上述流程可以看出,要使活性污泥法形成一个实用的处理方法,污泥除了有氧化和分解有机物的能力外,还要有良好的凝聚和沉淀性能,以使活性污泥能从混合液中分离出来,得到澄清的出
3、水。活性污泥中的细菌是一个混合群体,常以菌胶团的形式存在,游离状态的较少。菌胶团是由细菌分泌的多糖类物质将细菌包覆成的粘性团块,使细菌具有抵御外界不利因素的性能。菌胶团是活性污泥絮凝体的主要组成部分。游离状态的细菌不易沉淀,而混合液中的原生动物可以捕食这些游离细菌,这样沉淀池的出水就会更清彻,因而原生动物有利于出水水质的提高。三、活性污泥降解污水中有机物的过程活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段,吸附阶段和稳定阶段。在吸附阶段,主要是污水中的有机物转移到活性污泥上去,这是由于活性污泥具有巨大的表面积,而表面上含有多糖类的粘性物质所致。在稳定阶段,主要是转移到活性污泥上
4、的有机物为微生物所利用。当污水中的有机物处于悬浮状态和胶态时,吸附阶段很短,一般在1545min左右,而稳定阶段较长。在活性污泥的曝气过程中,废水中有机物的变化包括两个阶段:吸附阶段和稳定阶段。在吸附阶段,主要是废水中的有机物转移到活性污泥上去;在稳定阶段,主要是转移到活性污泥上去的有机物为微生物所利用。吸附量的大小,主要取决于有机物的状态,若废水中的有机物处于悬浮和胶体状态的相对量大时,则吸附量也大。分析中没有考虑微生物的内源呼吸。微生物的内源呼吸也消耗氧,特别是微生物的浓度比较高时,这部分耗氧量还比较大,不能忽略。因而上面的结论是概略的,主要目的是说明活性污泥过程中的有机物吸附稳定过程。第
5、2节气体传递原理和曝气池一、活性污泥法基本要素二、曝气设备三、曝气池池型一、图6-2)是上面几种扩散器的简图。通常扩散器的气泡愈大,氧的传递速率愈低,然而它的优点是堵塞的可能性小,空气的净化要求也低,养护管理比较方便。微小气泡扩散器由于氧的传递速率高,反应时间短,曝气池的容积可以缩小。因而选择何种扩散器要因地制宜。扩散器一般布置在曝气池的一侧和池底,以便形成旋流,增加气泡和混合液的接触时间,有利于氧的传递,同时使混合液中的悬浮固体呈悬浮状态。扩散器的构造形式很多,布置形式多样,但基本原理是一样的。读者可参考产品说明书和设计手册。鼓风曝气用鼓风机供应压缩空气,常用罗茨鼓风机和离心式鼓风机。罗茨鼓
6、风机适用于中小型污水厂,但噪声大,必须采取消音、隔音措施;离心式鼓风机噪声小,且效率高,适用于大中型污水厂,但国内产品规格还不多。2.机械曝气鼓风曝气是水下曝气,机械曝气则是表面曝气。机械曝气是用安装于曝气池表面的表面曝气机来实现的。表面曝气机分竖式和卧式两类。(1)竖式曝气机这类表曝机的转动轴与水面垂直,装有叶轮,当叶轮转动时,使曝气池表面产生水跃(图6-3),把大量的混合液水滴和膜状水抛向空气中,然后挟带空气形成水气混合物回到曝气池中,由于气水接触界面大,从而使空气中的氧很快溶入水中。随着曝气机的不断转动,表面水层不断更新,氧气不断地溶人,同时池底含氧量小的混合液向上环流和表面充氧区发生交
7、换,从而提高了整个曝气池混合液的溶解氧含量。因为池液的流动状态同池形有密切的关系,故曝气的效率不仅决定于曝气机的性能,还同曝气池的池形有密切关系。表曝机叶轮的淹没深度一般在10100mm,可以调节。淹没深度大时提升水量大,但所需功率亦会增大,叶轮转速一般为20100r/min,因而电机需通过齿轮箱变速,同时可以进行二挡和三挡调速,以适应进水水量和水质的变化。我国目前应用的这类表曝机有泵型,倒伞型和平板型,见(图6-4)。其中泵型表曝机已有系列产品。(2)卧式曝气刷这类曝气机的转动轴与水面平行,主要用于氧化沟。在垂直于转动轴的方向装有不锈钢丝(转刷)或板条,用电机带动,转速在5070r/min,
8、淹没深度为(1/31/4)转刷直径。转动时,钢丝或板条把大量液滴抛向空中,并使液面剧烈波动,促进氧的溶解;同时推动混合液在池内回流,促进溶解氧的扩散。见(图6-5)。3.曝气设备性能指标比较各种曝气设备性能的主要指标有:一是氧转移率,单位为mg/L.h;二是充氧能力(或动力效率)即每消耗1kWh动力能传递到水中的氧量(或氧传递速率),单位为kgq/kwh;三是氧利用率,通过鼓风曝气系统转移到混合液中的氧量占总供氧的百分比,单位为%。机械曝气无法计量总供氧量,因而不能计算氧利用率。三、图6-6)旋转推流是在这种曝气池中,扩散器装于横断面的一侧。由于气泡形成的密度差,池水产生旋流。池中的水沿池长方
9、向流动外,还有侧向旋流,形成了旋转推流,见(图6-7)。2.完全混合曝气池完全混合曝气池的池型可以为圆型也可以为方型或矩型。曝气设备可采用表面曝气机,置于池的表层中心,污水进入池的底部中心。污水一进池,在表面曝气机的搅拌下,立即和全池混合,水质均匀,不象推流那样前后段有明显的区别。完全混合曝气池可以和沉淀池分建和合建,因此可以分为分建式和合建式。(1)分建式表面曝气机的充氧和混合性能同池型关系密切,因而表面曝气机的选用应和池型配合,以达到好的效果。当采用泵型叶轮,线速度在45m/s时,曝气池的直径与叶轮的直径之比宜为4.57.5,水深与叶轮的直径比宜为2.54.5。当采用倒伞型和平板型叶轮时,
10、叶轮直径与曝气池的直径之比宜为1/31/5。分建式虽然不如合建式用地紧凑,且需专设的污泥回流设备,但运行上便于调节控制。(2)合建式合建式表面曝气池,我国定名为曝气沉淀池,国外称为加速曝气池。这种池型在我国曾一度流行,因为结构紧凑,沉淀池与曝气池合建于一个圆型池中,沉淀池设于外环,与中间的曝气池底有回流污泥缝相通,靠表曝机造成的水位差使回流污泥循环。为了使回流污泥缝不堵塞,缝隙较大,但这样又使回流污泥流量过大,通常达进水量的100%以上,有的竟达500%。由于曝气池和沉淀池合建于一个构筑物,难于分别控制和调节,运行不灵活,出水水质难于保证,国外已趋淘汰。合建式也可做成矩型。3.两种池型的结合在
11、推流曝气池中,也可以用多个表曝机充氧和搅拌,对于每一个表曝机所影响的范围内,则为完全混合,而对全池而言,又近似推流,此时相邻的表曝机旋转方向应相反,否则两机间的水流会互相冲突,见(图6-8)。也可用横向挡板在机与机之间隔开,避免互相干扰,见(图6-9)。这种池型各池可以独立,就成为完全混合;也可以各池串联,成为近似推流,运行灵活。为了曝气池投产时驯化活性污泥,各类曝气池在设计时,都应在池深1/2处留排液管。第3节活性污泥法的发展和演变传统的活性污泥法或称普通活性污泥法,经不断发展,已有多种运行方式。1.渐减曝气在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。因此等距离均量地布置扩
12、散器是不合理的。实际情况是:前半段氧远远不够,后半段供氧超过需要。渐减曝气的目的就是合理的布置扩散器,使布气沿程变化,而总的空气用量不变,这样可以提高处理效率。2.分步曝气在30年代,纽约市污水厂的曝气池空气量供应不足,厂总工程师把入流的一部分从池端引到池的中部分点进水,见(图6-10),解决了问题。使同样的空气量,同样的池子,得到了较高的处理效率。3.完全混合法美国1950年以前建造的曝气池全是狭长的条形池,按推流设计。由于前段需氧量很大,因而通过渐减曝气池来解决。但是,一般池子只有中段(约全长的1/3处)需氧速率与氧传递速率配合的比较好一些,见(图6-11)。在池的前段,因食料多,微生物的
13、生长率高,需氧率也就很大,因而即使渐减曝气也不能根本解决问题,实际的需氧速率受供氧速率控制和制约。图中需氧和供氧率之间池前后两块面积应相等。这样的供氧和需氧情况,当受到冲击负荷时,前段阴影面积扩大,后段阴影面积缩小,严重时,后段面积全部消失,出现全池缺氧情况。从上面二种运行方式看,传统活性污泥法的重要矛盾是供氧和需氧的矛盾,为了解决这个矛盾,渐减曝气是通过布气的方法来改善,分步曝气则是通过进水分配的均匀性上来改善。为了根本上改善长条形池子中混合液不均匀的状态,在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,它就是完全混合的概念,见(图6-12)。在完全混
14、合法的曝气池中,需氧速率和供氧速率的矛盾在全池得到了平衡,因而完全混合法有如下特征:池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同;人流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是象推流中仅仅由部分回流污泥来承担。因而完全混合池从某种意义上来讲,是一个大的缓冲器和均和池。它不仅能缓和有机负荷的冲击,也减少有毒物质的影响,在工业污水的处理中有一定优点;池液里各个部分的需氧率比较均匀。为适应完全混和的需要,机械曝气的圆形池子也得到了发展。机械曝气器很象搅拌机,而圆形池子便于完全混合。4.浅层曝气1953年,派斯维尔(Pasveer)曾计算并测定
15、氧在10静止水中的传递特性,如图14-25所示。他发现了气泡形成和破裂瞬间的氧传递速率最大的特点。在水的浅层处用大量空气进行曝气,就可获得较高的氧传递速率。为了使液流保持一定的环流速率,将空气扩散器分布在曝气池相当部分的宽度上,并设一条纵墙,将水池分为二部分,迫使曝气时液体形成环流。根据联邦德国埃姆歇实验站的测定结果,深度与单位能量吸氧率的关系见(图6-13)。因而扩散器的深度放置在水面以下0.60.8m范围为宜,此时与常规深度的曝气池相比,可以节省动力费用。此外,由于风压减小,风量增加,可以用一般的离心鼓风机。浅层曝气池水深为34m,以浅者为好。深宽比在1.0-1.3之间,供气量为3040
16、m3/3(水)h,风压lOkPa左右,动力效率可达1.8-2.6kg02/kWh。浅层曝气与一般曝气相比,空气量是增大,但风压仅为一般曝气的1/31/4,故电耗并不增加而略有下降。浅层池适用于中小型规模的污水厂。但由于布气系统进行维修上的困难,没有得到推广应用。5.深层曝气曝气池的经济深度是按基建费和运行费用来决定的。根据长期的经验,并经过多方面的技术经济比较,经济深度一般为45m。但随着城市的发展,普遍感到用地紧张,为了节约用地,从60年代开始,研究发展了深层曝气法。一般深层曝气池水深可达1020m。70年代以来,国外又发展了超深层曝气法,又称竖井或深井曝气,水深竟达150-300m,大大节
17、省了用地面积。同时由于水深大幅度增加,可以促进氧传递速率,从而提高了曝气池处理污水的负荷。但对深层曝气的特性和经济效果,还不能说已十分清楚。深井曝气法的实际装置直径为1.06.0m,深度为50-150m。井中分隔成两个部分,一面为下降管,另一面为上升管。污水及污泥从下降管导入,由上升管排出。在深井靠地面的井颈部分,局部扩大,以排除部分气体。经处理后的混合液,先经真空脱气(也可以加一个小的曝气池代替真空脱气,并充分利用混合液中的溶解氧),再经二次沉淀池固液分离。混合液也可用气浮法进行固液分离。(图6-14a)为深井曝气法处理流程。在深井中可利用空气作为动力,促使液流循环。采用空气循环的方法是启动
18、时先在上升管中比较浅的部位输入空气,使液流开始循环,待液流完全循环后,再在下降管中逐步供给空气。液流在下降管中与输入的空气一起,经过深井底部流人上升管中,并从井颈顶管排出,并释放部分空气。由于下降管和上升管的气液混合物存在着密度差,故促使液流保持不断循环。深井曝气池简图见(图6-14b)。深井曝气法中,活性污泥经受压力的变化较大,有时加压,有时减压,实践表明这时微生物的活性和代谢能力并无异常变化。但合成和能量的分配有一定变化,运行中发现二氧化碳的量比常规曝气多30%,污泥产量低。深井曝气池内,气液紊流大,液膜更新快,促使KI。值增大,同时气液接触时间增长,溶解氧的饱和浓度也由深度的增加而增加。
19、国外已建成了几十个深井曝气处理厂。国内也正在开展研究。但是,当井壁腐蚀或受损时污水是否会通过井壁渗透,污染地下水,这个问题必须严肃认真地对待。6.高负荷曝气或变型曝气有些污水厂只需要部分处理,因此产生了高负荷曝气法。曝气池中的MLSS,约300500mg/L,曝气的时间比较短,约23h,处理效率仅约65%左右,有别于传统的活性污泥法,故常称变型曝气。7.克劳斯(Kraus)法美国有一酿造厂,污水的碳水化合物含量有时特别高,给城市污水厂的运行造成很大困难,常引起污泥膨胀。膨胀的活性污泥不易在二次沉淀池中沉淀,而随水流带走,不仅降低了出水水质,而且造成回流污泥量不足,进而降低了曝气池中混合液悬浮固
20、体浓度。如不及时采取措施加以解决,就会使系统中的活性污泥愈来愈少,从根本上破坏曝气池的运行。克劳斯工程师把厌氧消化的上清液加到回流污泥中一起曝气,然后再进入曝气池,成功地克服了高碳水化合物的污泥膨胀问题。这个过程称为克劳斯法。消化池上清液中富有氨氮,可以供应大量碳水化合物代谢所需的氮。此外,消化池上清液挟带的消化污泥比重较大,有改善混合液沉淀性能的功效。8.延时曝气延时曝气在40年代末到50年代初在美国流行起来。特点是曝气时间很长,达24h甚至更长,MLSS较高,达到3 000-6 000mg/L,活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放。适用于污水量
21、很小的场合,最先是牛奶场,后来用于村庄和风景区、旅社等。近年来,国内用于高层建筑生活污水处理。设备可用钢板装配,由厂商供应。对于不是24h连续来水的场合,常常不设沉淀池而采用间歇运行方式,例如20h曝气和进水,2h沉淀,2h放空,再运行。也有曝气池和二沉池合建的。9.接触稳定法50年代德克萨斯州奥斯汀(Austin)城的污水厂由于水量增加,需要扩建。虽然另有空地,但地价昂贵,因而没有扩建的可能性,不得不另找它法。在实验室里,用活性污泥法处理生活污水时,混合液中液体部分的BOD5下降有一定的规律。如果测定BOD5时的取样间隔时间较长,例如每隔1h取样一次,那么所得的BOD5下降曲线是光滑的,如图
22、14-29的实线所示,表明池液中的反应接近于一级反应。但是,缩短取样间隔时,发现在运行开始后的第一小时内,BOD5值有一个迅速下降而后又逐渐回升的现象,见(图6-15)中虚线。而且这个短暂过程中BOD5的最低值与曝气数小时后的BOO基本相同,其值相当低。利用这一事实,把曝气时间缩短为1545win(MLSS为2 000 mg/L),取得了BOD5相当低的出水。但是,回流污泥丧失了活性,其降低污水中BOD5的能力下降了。于是把回流污泥与人流的城市污水汇合之前预先进行充分曝气,这样即可恢复它的活性。在适当改变原曝气池的出人口位置和增添扩散板面积后,只用了原池一半容积,就解决了超负荷问题。但是,每月
23、总有一天出水质量不好,调查研究后发现这一天是城内牛奶场的清洗日。牛奶场污水BOD5很高而SS不高。这启示了:混合液曝气过程中第一阶段BOD5的下降是由于吸附作用造成的,对于溶解的有机物,吸附作用不大或没有,因此,把这种方法称为接触稳定法,也叫吸附再生法,混合液的曝气完成了吸附作用,回流污泥的曝气完成稳定作用(恢复活性)。此外,还发现:这一方法直接用于原污水的处理比用于初沉池的出流水效果好,初沉池可以不用;剩余污泥量增加了。结果,在改造曝气池时,只增添了空气供应设备的污泥处理设备。接触稳定法的流程简图(图6-16)如下。实际上,再生池和吸附池可合建,用墙隔开。在接触稳定法中,回流污泥浓缩(由20
24、00mg/L变成8000mg/L)再曝气稳定,池容积节省了,或者说,同样的池子增加了处理能力。在50年代开发的氧化沟是延时曝气法的一种特殊形式(如图6-17所示),它的池体狭长,池深较浅,在沟槽中设有表面曝气装置。曝气装置的转动,推动沟内液体迅速流动,取得曝气和搅拌两个作用,沟中混合液流速约为0.3-0.6m/s,使活性污泥呈悬浮状态(图6-18)示的是一种典型的氧化沟-卡罗塞式氧化沟,它是由荷兰DHV公司于60年代开发的使用很广泛的一种氧化沟,如我国昆明兰花沟污水处理厂,桂林市东区污水处理厂及上海龙华肉联厂的废水处理都采用这种形式的氧化沟,它不但可以达到95%以上的BOD5去除率,还可同时达
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 引用 第六章 污水的好氧生物处理 活性污泥法 第六 污水 生物 处理 活性污泥
限制150内