数字电路与系统设计课后习题答案.doc
《数字电路与系统设计课后习题答案.doc》由会员分享,可在线阅读,更多相关《数字电路与系统设计课后习题答案.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流数字电路与系统设计课后习题答案.精品文档.1.1将下列各式写成按权展开式:(352.6)10=3102+5101+2100+610-1(101.101)2=122+120+12-1+12-3(54.6)8=581+5480+68-1(13A.4F)16=1162+3161+10160+416-1+1516-21.2按十进制017的次序,列表填写出相应的二进制、八进制、十六进制数。解:略1.3二进制数0000000011111111和00000000001111111111分别可以代表多少个数?解:分别代表28=256和210=1024个数。1
2、.4 将下列个数分别转换成十进制数:(1111101000)2,(1750)8,(3E8)16解:(1111101000)2=(1000)10 (1750)8=(1000)10 (3E8)16=(1000)101.5将下列各数分别转换为二进制数:(210)8,(136)10,(88)16解:结果都为:(10001000)21.6 将下列个数分别转换成八进制数:(111111)2,(63)10,(3F)16解:结果都为(77)81.7 将下列个数分别转换成十六进制数:(11111111)2,(377)8,(255)10解:结果都为(FF)161.8 转换下列各数,要求转换后保持原精度:解:(1.
3、125)10=(1.0010000000)10 小数点后至少取10位 (0010 1011 0010)2421BCD=(11111100)2 (0110.1010)余3循环BCD码=(1.1110)21.9 用下列代码表示(123)10,(1011.01)2:解:(1)8421BCD码: (123)10=(0001 0010 0011)8421BCD (1011.01)2=(11.25)10=(0001 0001.0010 0101)8421BCD (2)余3 BCD码(123)10=(0100 0101 0110)余3BCD (1011.01)2=(11.25)10=(0100 0100.0
4、101 1000)余3BCD1.10 已知A=(1011010)2,B=(101111)2,C=(1010100)2,D=(110)2(1) 按二进制运算规律求A+B,A-B,CD,CD,(2) 将A、B、C、D转换成十进制数后,求A+B,A-B,CD,CD,并将结果与(1)进行比较。解:(1)A+B=(10001001)2=(137)10 A-B=(101011)2=(43)10 CD=(111111000)2=(504)10 CD=(1110)2=(14)10(2)A+B=(90)10+(47)10=(137)10 A-B=(90)10-(47)10=(43)10 CD=(84)10(6)
5、10=(504)10 CD=(84)10(6)10=(14)10两种算法结果相同。1.11 试用8421BCD码完成下列十进制数的运算。解:(1)5+8=(0101)8421BCD+(1000)8421BCD=1101 +0110=(1 0110)8421BCD=13(2)9+8=(1001)8421BCD+(1000)8421BCD=1 0001+0110=(1 0111)8421BCD=17(3) 58+27=(0101 1000)8421BCD+(0010 0111)8421BCD=0111 1111+ 0110=(1000 0101)8421BCD=85(4)9-3=(1001)842
6、1BCD-(0011)8421BCD=(0110)8421BCD=6(5)87-25=(1000 0111)8421BCD-(0010 0101)8421BCD=(0110 0010)8421BCD=62(6)843-348 =(1000 0100 0011)8421BCD-(0011 0100 1000)8421BCD=0100 1111 1011- 0110 0110=(0100 1001 0101)8421BCD=4951.12 试导出1位余3BCD码加法运算的规则。解:1位余3BCD码加法运算的规则加法结果为合法余3BCD码或非法余3BCD码时,应对结果减3修正即减(0011)2;相加
7、过程中,产生向高位的进位时,应对产生进位的代码进行“加33修正”即加(0011 0011)2。2.1 有A、B、C三个输入信号,试列出下列问题的真值表,并写出最小项表达式m( )。(1)如果A、B、C均为0或其中一个信号为1时。输出F=1,其余情况下F=0。(2)若A、B、C出现奇数个0时输出为1,其余情况输出为0。(3)若A、B、C有两个或两个以上为1时,输出为1,其余情况下,输出为0。解:F1(A,B,C)=m(0,1,2,4)F2(A,B,C)=m(0,3,5,6)F3(A,B,C)=m(3,5,6,7)2.2 试用真值表证明下列等式:(1)AB+BC+AC=ABC+ABC(2)AB+B
8、C+AC=AB BC AC证明:(1)ABCAB+BC+ACABCABC+ABC0000010100111001011101111000000100000101001110010111011110000001真值表相同,所以等式成立。(2)略2.3 对下列函数,说明对输入变量的哪些取值组合其输出为1?(1)F(A,B,C)=AB+BC+AC(2)F(A,B,C)=(A+B+C)(A+B+C)(3)F(A,B,C)=(AB+BC+AC)AC解:本题可用真值表、化成最小项表达式、卡诺图等多种方法求解。(1)F输出1的取值组合为:011、101、110、111。(2)F输出1的取值组合为:001、0
9、10、011、100、101、110。(3)F输出1的取值组合为:101。2.4 试直接写出下列各式的反演式和对偶式。(1) F(A,B,C,D,E)=(AB+C)D+EB(2) F(A,B,C,D,E)=AB+CD+BC+D+CE+B+E(3) F(A,B,C)=AB+C AB C解:(1) F=(A+B)C+DE+B F=(A+B)C+DE+B(2) F=(A+B)(C+D)(B+C)D(C+E)BE F=(A+B)(C+D)(B+C)D(C+E)BE(3)F=(A+B)C+ A+B+C F=(A+B)C+A+B+C2.5 用公式证明下列等式:(1)AC+AB+BC+ACD=A+BC(2)
10、 AB+AC+(B+C) D=AB+AC+D(3) BCD+BCD+ACD+ABCD+ABCD+BCD+BCD=BC+BC+BD(4) ABC+BC+BCD+ABD=A + B +C+D证明:略2.6 已知ab+ab=ab,ab+ab=ab,证明:(1) abc=abc(2) abc=abc证明:略2.7试证明:(1)若ab+ a b=0则a x+b y=ax + by(2)若a b+ab=c,则a c + ac=b证明:略2.8 将下列函数展开成最小项之和:(1) F(ABC)=A+BC(2) F(ABCD)=(B+C)D+(A+B) C(3) F(ABC)=A+B+C+A+B+C解:(1)
11、F(ABC)=m(3,4,5,6)(2) F(ABCD)=m(1,3,5,6,7,9,13,14,15)(3) F(ABC)=m(0,2,6)2.9 将题2.8中各题写成最大项表达式,并将结果与2.8题结果进行比较。解:(1)F(ABC)=M(0,1,2) (2) F(ABCD)=M(2,4,8,10,11,12) (3)F(ABC)=M(1,3,4,5,7)2.10 试写出下列各函数表达式F的F和F的最小项表达式。(1) F=ABCD+ACD+BCD(2) F=AB+AB+BC解:(1)F=m(0,1,2,3,5,6,7,8,9,10,13,14) F=m(1,2,5,6,7,8,9,10,
12、12,13,14,15)(2) F=m(0,1,2,3,12,13) F=m(2,3,12,13,14,15)2.11试用公式法把下列各表达式化简为最简与或式(1)F=A+ABC+ABC+BC+B解:F =A+B(2) F=(A+B)(A+B+C)(A+C)(B+C+D)解:F=AB+AC(3) F=AB+AB BC+BC解:F=AB+BC+AC或:F=AB+AC+BC(4) F=ACD+BC+BD+AB+AC+BC解:F=AD+C+B(5) F=AC+BC+B(AC+AC)解:F=AC+BC2.12 用卡诺图把下列函数化简为最简与或式(1)F(A,B,C)=m(0,1,2,4,5,7)解:F
13、=B+AC+AC图略(2)F(A,B,C,D)=m(0,2,5,6,7,9,10,14,15)解:F=ABCD+ABD+ABD+BC+CD图略(3)F(A,B,C,D)=m(0,1,4,7,9,10,13) +f (2,5,8,12,15)解:F=C+BD+BD图略(4)F(A,B,C,D)=m(7,13,15) 且ABC=0, ABC=0, ABC=0解:F(A,B,C,D)=BD图略(5) F(A,B,C,D)=ABC+ABC+ABCD+ABCD且ABCD不可同时为1或同时为0解:F(A,B,C,D)=BD+AC图略(6)F(A,B,C,D)=M (5,7,13,15)解:F=B+D图略(
14、7)F(A,B,C,D)=M (1,3,9,10,14,15)解:F=AD+AB+CD+BC+ABCD图略(8)F(A,B,C,D,E)=m(0,4,5,6,7,8,11,13,15,16,20,21,22,23,24,25,27,29,31)解:F=CDE+BC+CE+BDE+ABE图略2.13 用卡诺图将下列函数化为最简或与式(1)F(A,B,C)=m(0,1,2,4,5,7)解:F=(A+B+C)(A+B+C)图略(2)F(A,B,C)=M (5,7,13,15)解: F=(B+D)图略2.14 已知:F1(A,B,C)=m(1,2,3,5,7) +f (0,6),F2(A,B,C)=m
15、(0,3,4,6) +f (2,5),求F=F1F2的最简与或式解:F=A+B4.1 分析图4.1电路的逻辑功能解:(1)推导输出表达式(略)(2) 列真值表(略)(3)逻辑功能:当M=0时,实现3位自然二进制码转换成3位循环码。 当M=1时,实现3位循环码转换成3位自然二进制码。4.2 分析图P4.2电路的逻辑功能。 解:(1)从输入端开始,逐级推导出函数表达式。(略)(2)列真值表。(略)(3)确定逻辑功能。假设变量A、B、C和函数F1、F2均表示一位二进制数,那么,由真值表可知,该电路实现了一位全减器的功能。A、B、C、F1、F2分别表示被减数、减数、来自低位的借位、本位差、本位向高位的
16、借位。4.3分析图4.3电路的逻辑功能解:实现1位全加器。4.4 设ABCD是一个8421BCD码,试用最少与非门设计一个能判断该8421BCD码是否大于等于5的电路,该数大于等于5,F= 1;否则为0。解: 逻辑电路如下图所示:4.5 试设计一个2位二进制数乘法器电路。解:为了使电路尽量简单,希望门数越少越好,本电路是四输出函数,圈卡诺圈时要尽量选择共有的卡诺圈以减少逻辑门的数量。电路图略。4.6 试设计一个将8421BCD码转换成余3码的电路。解: 电路图略。4.7 在双轨输入条件下用最少与非门设计下列组合电路: 解:略4.8 在双轨输入信号下,用最少或非门设计题4.7的组合电路。解:将表
17、达式化简为最简或与式:(1)F=(A+C)(A+B+C)= A+C+A+B+C(2)F=(C+D)(B+D)(A+B+C)= C+D+B+D+A+B+C(3)F=(A+C)(A+B+D)(A+B+D)= A+C+A+B+D+A+B+D(4)F=(A+B+C)(A+B+C)= A+B+C+A+B+C4.9 已知输入波形A、B、C、D,如图P4.4所示。采用与非门设计产生输出波形如F的组合电路。解: F=AC+BC+CD电路图略4.10 电话室对3种电话编码控制,按紧急次序排列优先权高低是:火警电话、急救电话、普通电话,分别编码为11,10,01。试设计该编码电路。解:略4.11 试将2/4译码器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字电路 系统 设计 课后 习题 答案
限制150内