新课标三高考数学试题目分类解析立体几何.doc
《新课标三高考数学试题目分类解析立体几何.doc》由会员分享,可在线阅读,更多相关《新课标三高考数学试题目分类解析立体几何.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流新课标三高考数学试题目分类解析立体几何.精品文档.20072009新课标三年高考数学试题分类解析立体几何一、选择题1(2007广东文6)若是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是A若,则B若,则C若,则 D若,则解析:逐一判除,易得答案(D).2(2007山东文理3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )正方形圆锥三棱台正四棱锥ABCD答案:D【分析】: 正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D。2(2007海、宁理文8)已知某个几何体的三视图如下,根据图中2020正视图20侧视图1
2、01020俯视图标出 的尺寸(单位:cm),可得这个几何体的体积是()答案:B解析:如图, 3(2007海、宁理12)一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等设四棱锥、三棱锥、三棱柱的高分别为,则()答案:B【分析】:如图,设正三棱锥的各棱长为,则四棱锥的各棱长也为, 于是4(2007海、宁文11)已知三棱锥的各顶点都在一个半径为的球面上, 球心在上,底面,则球的体积与三棱锥体积之比是() 答案:D【分析】:如图, 5.(2008山东卷)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积
3、是(A)9(B)10(C)11 (D)12解析:考查三视图与几何体的表面积。从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为答案:D6.(2008广东卷)将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )EFDIAHGBCEFDABC侧视图1图2BEABEBBECBED解析:解题时在图2的右边放扇墙(心中有墙),可得答案A.答案:A7.(2008海南、宁夏理科卷)某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b
4、的最大值为( )ABCD解析:结合长方体的对角线在三个面的投影来理解计算。如图设长方体的高宽高分别为,由题意得,所以当且仅当时取等号。答案:C8.(2008海南、宁夏文科卷)已知平面平面,= l,点A,Al,直线ABl,直线ACl,直线m,m,则下列四种位置关系中,不一定成立的是( )A. ABmB. ACmC. ABD. AC解析:容易判断、三个答案都是正确的,对于,虽然,但不一定在平面内,故它可以与平面相交、平行,故不一定垂直;答案:D9. (广东文6理5)给定下列四个命题:若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;若一个平面经过另一个平面的垂线,那么这两个平面相互
5、垂直;垂直于同一直线的两条直线相互平行;若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是和 和 .和 和答案:D解析:错, 正确, 错, 正确.故选D10.(宁夏海南文理11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c)为(A)48+12 (B)48+24 (C)36+12 (D)36+24解析:选A.11. (宁夏海南文9理8) 如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是 (A) (B) (C)三棱锥的体积为定值 (D)异面直线所成的角为定值解析:A正确,易证B显然正确,;C正确,可用等积法求得;D错误。选D.
6、12.(山东文理4) 一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B. C. D. 2 2 侧(左)视图 2 2 2 正(主)视图 解析::该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为,所以体积为俯视图 所以该几何体的体积为.答案:C【命题立意】:本题考查了立体几何中的空间想象能力,由三视图能够想象得到空间的立体图,并能准确地计算出.几何体的体积.13.(辽宁文5)如果把地球看成一个球体,则地球上的北纬纬线长和赤道长的比值为(A)0.8 (B)0.75 (C)0.5 (D)0.25解析:设地球半径为R,则北纬纬线圆的半径为
7、Rcos60R 而圆周长之比等于半径之比,故北纬纬线长和赤道长的比值为0.5.答案:C14.(辽宁理11)正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为(A)1:1(B)1:2(C)2:1(D)3:2答案:C 解析:连接FC、AD、BE,设正六边形的中心为O,连接AC与OB相交点H,则GHPO,故GH平面ABCDEF,平面GAC平面ABCDEF又DCAC,BHAC,DC平面GAC,BH平面GAC,且DC=2BH,故三棱锥D-GAC与三棱锥P-GAC体积之比为2:1。15(福建文5)如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为。则该几
8、何体的俯视图可以是解析:解法1 由题意可知当俯视图是A时,即每个视图是变边长为1的正方形,那么此几何体是立方体,显然体积是1,注意到题目体积是,知其是立方体的一半,可知选C. 解法2 当俯视图是A时,正方体的体积是1;当俯视图是B时,该几何体是圆柱,底面积是,高为1,则体积是;当俯视是C时,该几何是直三棱柱,故体积是,当俯视图是D时,该几何是圆柱切割而成,其体积是.故选C.16. (浙江文4)设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若,则 C若,则 D若,则 答案:C 【命题意图】此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中
9、的基本元素关系解析:对于A、B、D均可能出现,而对于C是正确的17. (浙江理5)在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是( )A B C D答案:C 解析:取BC的中点E,则面,因此与平面所成角即为,设,则,即有二、填空题1.(2008海南、宁夏理科卷)一个六棱柱的底面是正六边形,其侧棱垂直底面已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为解析:令球的半径为,六棱柱的底面边长为,高为,显然有,且答案:2.(2008海南、宁夏文科卷)一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该
10、六棱柱的高为,底面周长为3,那么这个球的体积为 _解析:正六边形周长为,得边长为,故其主对角线为,从而球的直径 球的体积答案:3. (天津文理12) 如图是一个几何体的三视图,若它的体积是,则_【考点定位】本小题考查三视图、三棱柱的体积,基础题。解析:知此几何体是三棱柱,其高为3,底面是底边长为2,底边上的高为的等腰三角形,所以有4. (江苏12)设和为不重合的两个平面,给出下列命题:(1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直。
11、上面命题中,真命题的序号 (写出所有真命题的序号).解析:考查立体几何中的直线、平面的垂直与平行判定的相关定理。真命题的序号是(1)(2)5.(浙江文12)若某几何体的三视图(单位:)如图所示,则此几何体的体积是 答案:18 解析:该几何体是由二个长方体组成,下面体积为,上面的长方体体积为,因此其几何体的体积为186.(浙江理17)如图,在长方形中,为的中点,为线段(端点除外)上一动点现将沿折起,使平面平面在平面内过点作,为垂足设,则的取值范围是 答案: 解析:此题的破解可采用二个极端位置法,即对于F位于DC的中点时,随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是7(
12、辽宁理15)设某几何体的三视图如下(尺寸的长度单位为m),则该几何体的体积为_m3。答案:4 解析:设几何体的直观图如右,则。8(辽宁文16)设某几何体的三视图如下(尺寸的长度单位为m)。 则该几何体的体积为 解析:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 体积等于2434答案:4三、解答题:1.(2007广东理19)如图6所示,等腰ABC的底边AB=6,高CD=3,点B是线段BD上异于点B、D的动点.点F在BC边上,且EFAB.现沿EF将BEF折起到PEF的位置,使PEAE。记BEx,V(x)表示四棱锥PACFE的体积。()求V(x)的表达式;()当x为何值时,V(x)取
13、得最大值?()当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值;(1)由折起的过程可知,PE平面ABC,V(x)=()(2),所以时, ,V(x)单调递增;时 ,V(x)单调递减;因此x=6时,V(x)取得最大值;(3)过F作MF/AC交AD与M,则,PM=,在PFM中, ,异面直线AC与PF所成角的余弦值为;2(2007广东文17)(本小题满分12分) 已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形 (1)求该儿何体的体积V; (2)求该几何体的侧面积S解: 由已知可得该几何
14、体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD ;(1) (2) 该四棱锥有两个侧面VAD、VBC是全等的等腰三角形,且BC边上的高为 , 另两个侧面VAB. VCD也是全等的等腰三角形,AB边上的高为 因此 3(2007山东文20)BCDA(本小题满分12分)如图,在直四棱柱中,已知(1)求证:;(2)设是上一点,试确定的位置,使平面,并说明理由(1)证明:在直四棱柱中,连结,四边形是正方形BCDA又,平面, 平面,平面,且,平面,BCDAME又平面,(2)连结,连结,设,连结,平面平面,要使平面,须使,又是的中点是的中点又易知,即是的中点综上所述,当是的中点时,
15、可使平面4(2007山东理19)(本小题满分12分)如图,在直四棱柱中,已知(I)设是的中点,求证: ;(II)求二面角的余弦值.解::(I)连结,则四边形为正方形,且,为平行四边形,(II) 以D为原点,所在直线分别为轴、轴、轴,建立空间直角坐标系,不妨设,则设为平面的一个法向量,由得,取,则. 设为平面的一个法向量,由得,取,则.由于该二面角为锐角,所以所求的二面角的余弦值为5(2007海南、宁夏文18)(本小题满分12分)如图,为空间四点在中,等边三角形以为轴运动()当平面平面时,求;()当转动时,是否总有?证明你的结论解:()取的中点,连结,因为是等边三角形,所以当平面平面时,因为平面
16、平面,所以平面,可知由已知可得,在中,()当以为轴转动时,总有证明:()当在平面内时,因为,所以都在线段的垂直平分线上,即()当不在平面内时,由()知又因,所以又为相交直线,所以平面,由平面,得综上所述,总有6(2007海南、宁夏文18)(本小题满分12分)如图,在三棱锥中,侧面与侧面均为等边三角形,为中点()证明:平面;()求二面角的余弦值证明:()由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而所以为直角三角形,又所以平面()解法一:取中点,连结,由()知,得为二面角的平面角由得平面所以,又,故所以二面角的余弦值为解法二:以为坐标原点,射线分别为轴、轴的正半轴,建立如
17、图的空间直角坐标系设,则的中点,故等于二面角的平面角所以二面角的余弦值为7(2008江苏卷)在四面体ABCD中,CB=CD,且E,F分别是AB,BD的中点,求证(I)直线; (II)。解析: 证明:(I)E,F分别为AB,BD的中点(II)又,所以8(2008海南、宁夏理科卷)ABCDP如图,已知点P在正方体的对角线上,()求DP与所成角的大小;()求DP与平面所成角的大小解析:如图,以为原点,为单位长建立空间直角坐标系ABCDPxyzH则,连结,在平面中,延长交于设,由已知,由可得解得,所以()因为,所以即与所成的角为()平面的一个法向量是因为, 所以可得与平面所成的角为9(2008广东理科
18、卷)FCPGEABD如图所示,四棱锥的底面是半径为的圆的内接四边形,其中是圆的直径,垂直底面,分别是上的点,且,过点作的平行线交于(1)求与平面所成角的正弦值;(2)证明:是直角三角形;(3)当时,求的面积解析:(1)在中,而PD垂直底面ABCD,在中,,即为以为直角的直角三角形。设点到面的距离为,由有,即(2),而,即,,,是直角三角形;(3)时,即,的面积10(2008广东文科卷)如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,。(1)求线段PD的长;(2)若,求三棱锥P-ABC的体积。解析:(1) BD是圆的直径 , 又 , (2 ) 在中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 三高 数学试题 分类 解析 立体几何
限制150内