氧传感器故障诊断与分析.doc
《氧传感器故障诊断与分析.doc》由会员分享,可在线阅读,更多相关《氧传感器故障诊断与分析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流氧传感器故障诊断与分析.精品文档.毕业设计(论文)题目: 氧传感器故障诊断与分析 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集
2、、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名:
3、日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日毕业设计(论文)任务书班 级 学生姓名 学 号 发题日期: 年 月 日 完成日期: 月 日题 目 氧传感器故障诊断与分析 1、本论文的目的、意义 2、学生应完成的任务 3、论文各部分内容及时间分配:(共 20 周)
4、第一部分 ( 周) 第二部分 ( 周) 第三部分 ( 周)第四部分 ( 周) 第五部分 ( 周)评阅及答辩 ( 周)备 注 指导教师: 年 月 日审 批 人: 年 月 日摘 要本文主要介绍汽车氧传感器及引起的各种故障的诊断与分析,氧传感器在电控汽车中为使混合气的空燃比达到最佳,有氧传感器修正的实际喷油时间比预先设定的基本喷油时间延长或缩短的时间的百分比。范围在10%10%之间。氧传感器在车辆发生故障多是老化、线路故障和燃油质量问题造成,本人根据实际工作的体会,浅谈氧传感器的故障诊断并分析造成故障的原因。关键词:汽车; 氧传感器; 故障; 诊断目 录第一章 绪论61.1、两种材料的氧传感器的发展
5、71.1.1、氧传感器应用在汽车上的意义7第二章、氧传感器的结构和工作原理82.1、氧化锆式氧传感器92.1.1、氧化钛式氧传感器10第三章、氧传感器的检测113.1、氧传感器的基本电路11第四章、氧传感器的常见故障144.1主要故障和引起原因14第五章、氧传感器的检测与清洗方法165.1、电阻电压法检测165.1.1、氧传感器的清洗方法如下:18第六章、案例分析19结论21致谢22参考文献:23第一章 绪论随着汽车技术的发展,世界各国对汽车尾气排放标准要求越来越严格,电喷汽车越来越受市场的追捧。氧传感器是现代汽车控制废气排放、提高燃油经济性的重要传感器之一,发动机的氧传感器是发动机用于调节空
6、燃比信号,氧传感器故障会造成燃油消耗增大,发动机工作异常,不但造成经济损失还会造成大气污染。汽车用传感器主要分为氧化锆和氧化钛型。本文主要介绍这两种传感器。1.1、两种材料的氧传感器的发展(1)二氧化锆传感器发展二氧化锆的离子导电性最早研究是在1900 年,而真正将氧传感器应用于汽车上则是在1976 年,由德国博世BOSCH 公司首先在瑞典VOLVO 汽车上装用了氧化锆氧传感器,实现了汽车尾气空燃比的反馈控制。之后通用、福特、丰田、日产等汽车都先后开发了氧传感器并应用于汽车上来控制汽车尾气。目前二氧化锆传感器已是应用在汽车上较成熟的氧传感器。(2)二氧化钛传感器发展二氧化钛(TiO2)属N 型
7、半导体材料,其阻值大小取决于材料温度及周围环境中氧离子的浓度,因此可以检测排气中的氧离子浓度。氧化物半导体表面可选择性地吸附某种气体,利用其氧化物薄膜的电阻率变化可制成气敏元件是由日本的清山哲郎在1962年。而二氧化钛传感器在汽车上的应用是日本于1982 年才开始使用,丰田公司于1984 年研制成功了管芯式氧化钛传感器,1985 年研制成功厚膜式氧化钛传感器并批量生产,并且之后在全球得到迅速的发展。氧化钛式一般都为加热型传感器,由于价格便宜,且不易受到硅离子的腐蚀,因此随着新技术,特别是纳米加工技术发展,二氧化钛传感器将更具有广阔的前景。1.1.1、氧传感器应用在汽车上的意义在使用三元催化转换
8、器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。第二章、氧传感器的结构和工作原理在讨论氧传感之前,我们先来研究引擎燃烧后所产生的有害废气。一般汽车所排放的废气特别是对人体有害的,主要有三种:一氧化碳(CO)、碳氢化合物(HC)、氮氧化合物(NOx)、其中CO、HC只要使汽油完全地燃烧即可将这两者废气减到最低,然而当汽油达到完全燃烧时温度容易升高,连带的也就
9、使得NOx剧增,在这部份可利用EGR来减少其发生量。但这对于废气的管制显然还不够的,要使引擎所有的运转范围皆达到其控制标准,因此加入了三元触媒转化器的控制,其内部有着极为细微的孔洞并含有大量的金属:铂、铑、钯。它能将上述三种有害的气体进行氧化及还原的作用,转化成无害的气体或是一般的废气。然而触媒转化器的使用条件相当严苛,除了需达到较高工作温度外,最重要的是它最大净化率是发生在理论混合比附近14.7: 1,也就是说引擎的燃烧须控制在14.7: 1空燃混合比之下,要达到此细微之标准并不容易,故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。并将其转换成电压信号或电阻信号,反馈给ECU。EC
10、U控制空燃比收敛于理论值。目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。2.1、氧化锆式氧传感器氧化锆式氧传感器的基本元件是氧化锆陶瓷管(固体电解质),亦称锆管。锆管固定在带有安装螺纹的固定套中,内外表面均覆盖着一层多孔性的铅膜,其内表面与大气接触,外表面与废气接触。氧传感器的接线端有一个金属护套,其上开有一个用于锆管内腔与大气相通的孔;电线将锆管内表面铂极经绝缘套从此接线端引出。如图2-1所示。图2-1 氧化锆式传感器氧化锆在温度超过300后,才能进行正常工作。早期使用的氧传感器靠排气加热,这种传感器必须在发动机起动运转数分钟后才能开始工作,它只有一根接线与E
11、CU相连。现在,大部分汽车使用带加热器的氧传感器,这种传感器内有一个电加热元件,可在发动机起动后的20-30s内迅速将氧传感器加热至工作温度。它有三根接线,一根接ECU,另外两根分别接地和电源。锆管的陶瓷体是多孔的,渗入其中的氧气,在温度较高时发生电离。由于锆管内、外侧氧含量不一致,存在浓差,因而氧离子从大气侧向排气一侧扩散,从而使锆管成为一个微电池,在两铂极间产生电压。当混合气的实际空燃比小于理论空燃比,即发动机以较浓的混合气运转时,排气中氧含量少,但CO、HC、H2等较多。这些气体在锆管外表面的铅催化作用下与氧发生反应,将耗尽排气中残余的氧,使锆管外表面氧气浓度变为零,这就使得锆管内、外侧
12、氧浓差加大,两铅极间电压陡增。因此,锆管氧传感器产生的电压将在理论空燃比时发生突变:稀混合气时,输出电压几乎为零;浓混合气时,输出电压接近1V。要准确地保持混合气浓度为理论空燃比是不可能的。实际上的反馈控制只能使混合气在理论空燃比附近一个狭小的范围内波动,故氧传感器的输出电压在0.1-0.8V之间不断变化(通常每10s内变化8次以上)。如果氧传感器输出电压变化过缓(每1Os少于8次)或电压保持不变(不论保持在高电位或低电位),则表明氧传感器有故障,需检修。2.1.1、氧化钛式氧传感器氧化钛式氧传感器是利用二氧化钛材料的电阻值随排气中氧含量的变化而变化的特性制成的,故又称电阻型氧传感器。二氧化钛
13、式氧传感器的外形和氧化锆式氧传感器相似,在传感器前端的护罩内是一个二氧化钛厚膜元件。纯二氧化钛在常温下是一种高电阻的半导体,但表面一旦缺氧,其品格便出现缺陷,电阻随之减小。由于二氧化钛的电阻也随温度不同而变化,因此,在二氧化钛式氧传感器内部也有一个电加热器,以保持氧化钛式氧传感器在发动机工作过程中的温度恒定不变。如下图2-2所示。图2-2 氧化钛式氧传感器ECU B+端子将一个恒定的1V电压加在氧化钛式氧传感器的一端上,传感器的另一端与搭铁端子相接。当排出的废气中氧浓度随发动机混合气浓度变化而变化时,氧传感器的电阻随之改变,信号端子上的电压降也随着变化。当信号端子上的电压高于参考电压时,ECU
14、判定混合气过浓;当信号端子上的电压低于参考电压时,ECU判定混合气过稀。通过ECU的反馈控制,可保持混合气的浓度在理论空燃比附近。在实际的反馈控制过程中,二氧化钛式氧传感器与ECU连接的信号端子上的电压也是在0.1-0.9V之间不断变化,这一点与氧化锆式氧传感器是相似的。氧化钛式氧传感器对比氧化锆式氧传感器的工作原理有很大的不同,它是利用多孔状导体TiO2的导电性随排气中氧含量的变化而变化的特性制成的,故又称电阻性氧传感器。这种传感器的结构简单、体积小、成本低,但是在300900工作时,电阻值随温度变化较大,所以必须用温度补偿的方法来提高精度,通常用另一个实心TiO2导体作为温度补偿。第三章、
15、氧传感器的检测3.1、氧传感器的基本电路(1)氧传感器加热器电阻的检测点火开关置于“OFF”,拔下氧传感器的导线连接器,用万用表档测量氧传感器接线端中加热器端子与自搭铁端子(图3-1端子1和2)间的电阻其电阻值应符合标准值(一般为4-40;具体数值参见具体车型说明书)。如不符合标准,应更换氧传感器。测量后,接好氧传感器线束连接器,以便作进一步的检测。(2)氧传感器反馈电压的检测测量氧传感器反馈电压时,应先拔下氧传感器线束连接器插头,对照被测车型的电路图,从氧传感器反馈电压输出端引出一条细导线,然后插好连接器,在发动机运转时从引出线上测量反馈电压。有些车型也可以从故障诊断插座内测得氧传感器的反馈
16、电压,如丰田汽车公司生产的小轿车,可从故障诊断插座内的OX1或OX2插孔内直接测得氧传感器反馈电压(丰田V型六缸发动机两侧排气管上各有一个氧传感器,分别和故障检测插座内的OX1和OX2插孔连接)。在对氧传感器的反馈电压进行检测时,最好使用指针型的电压表,以便直观地反映出反馈电压的变化情况。此外,电压表应是低量程(通常为2V)和高阻抗(阻抗太低会损坏氧传感器)的。内层铂金层与大气接触,所以氧气浓度高。外层铂金与排气接触,氧气浓度低。当混合比较高时,排放的废气所含的氧相对地减少。因此二氧化锆两侧的铂金所接触到的氧气高低落差大,所产生的电动势也相对高(将近1V);当混合比较稀时,燃烧后多余的氧气较多
17、,二氧化锆两侧的铂金层的氧气落差小,因此所产生的电动势低(将近0V).即下图3-2所示。 图3-2 喷油量少空燃比大废气中氧含量大氧传感器产生电压低ECU控制喷油量大喷油量大空燃比小废气中氧含量少氧传感器产生电压高ECU控制喷油量少二氧化锆式氧传感器的工作温度需在350度以上其特性才能充分体现,为使氧传感器尽快达到工作温度,为其附加了一个数410的陶瓷加热器,引擎发动机约30秒钟后达到正常工作温度,输出的电压信号送到ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气根据氧传感器的电压信号,电脑按照尽可能接近14.7: 1的理论最佳空燃比来稀释或加浓混合气,此过程将不断地
18、在稀释加浓稀释地空燃比进行循环调整,使氧传感器在0.10.9V间变换(以50次min左右)送给电脑,在发动机怠速时实现闭环控制。因此,氧传感器是电子控制燃油计量的关键传感器。第四章、氧传感器的常见故障4.1主要故障和引起原因 (1)氧传感器中毒 氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。如图4-1和4-2所示。图4-1 铅中毒 图4-
19、2 硅中毒另外,氧传感器发生硅中毒也是常有的事。一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。 (2)积碳 由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,如图4-3所示。会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。图4-3 积碳(3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传感器 故障诊断 分析
限制150内