移动通信中信道均衡技术的研究与仿真.doc
《移动通信中信道均衡技术的研究与仿真.doc》由会员分享,可在线阅读,更多相关《移动通信中信道均衡技术的研究与仿真.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流移动通信中信道均衡技术的研究与仿真.精品文档.毕业设计(论文)任务书题 目 移动通信中信道均衡技术的研究与仿真起讫日期 年 月 日至 年 月 日学生姓名 专业班级 所在学院 电气信息学院 指导教师 职称 讲师 所在单位 电子信息工程教研室 2013年 6 月 日摘 要在移动通信领域中,码间干扰始终是影响通信质量的主要因素之一。为了提高通信质量,减少码间干扰,在接收端通常采用均衡技术抵消信道的影响。由于信道响应是随着时间变化的,通常采用自适应均衡器。自适应均衡器能够自动的调节系数从而跟踪信道,成为通信系统中一项关键的技术。本篇论文在对无线通信信
2、道进行研究的基础上,阐述了信道产生码间干扰的原因以及无码间干扰的条件,介绍了时域均衡的原理。深入研究了均衡器的结构和自适应算法,在均衡器的结构中主要介绍了2种自适应均衡器结构即线性横向均衡器和判决反馈均衡器,并对这几种结构进行了比较。对于系数调整算法主要介绍了常用的几种算法,包括LMS算法、盲均衡常用的恒模算法(CMA),并讨论了它们各自的优缺点。最后选用线性横向均衡器结构与上述2种系数调整算法,利用MATLAB进行仿真,并对结果进行分析与比较,实验结果为CMA算法整体较LMS算法好。关键字:均衡器 LMS CMA MATLABAbstractIn the field of mobile co
3、mmunications, the inter-symbol interferences (ISI) are always one of the primary factor which effects transmission. Adaptive equalization is mainly solution of dealing with ISI. Equalizers are often used to combat the influence of channels for improving communications quality and decreasing ISI in r
4、eceivers. Sometimes, channel response varies due to time, the adaptive equalizer is always necessary. Equalizer coefficients can be automatically adjusted to track the channel as a key communication system technology. On the basis of studying on wireless communication channel, this thesis discusses
5、the reasons of resulting inter-symbol interference (ISI) and presents the theory of adaptive equalizers. The equalizer structures and the adaptive algorithm are particularly studied in this paper. four adaptive equalizer structures are mainly introduced and compared, such as linear horizontal equali
6、zer, decision feedback equalizer. Then we research the commonly used algorithms of the adaptive equalizer, including LMS, CMA, and discuss their respective advantages and disadvantages. Finally, the adaptive equalizers using LMS, CMA is simulated by the MATALB. The simulation results show that CMA i
7、s better than LMS. Keywords: equalizer LMS RLS CAM MATLAB目 录第一章 绪论11.1引言11.2国内(外)研究现状11.3论文研究的主要内容2第二章 信道、码间干扰及均衡技术简介42.1 信道42.2 码间干扰52.3均衡器原理62.4均衡器的分类72.4.1 线性横向均衡器结构(LTE)82.4.2 判决反馈均衡器(DFE)92.5 本章小结11第三章 移动通信中均衡算法的研究123.1 最小均衡误差算法(LMS)123.2 盲均衡算法153.3 本章小结18第四章 均衡器的仿真与实现194.1仿真系统框图194.2基于LMS算法均衡器
8、仿真194.2.1实验结果214.3基于CMA算法均衡器仿真214.3.1实验结果244.4 LMS算法与CMA算法比较24第五章 总 结25致谢26参考文献27附录28第一章 绪论1.1引言通常信道特性是一个复杂的函数,它可能包括各种线性失真、非线性失真、交调失真、衰落等。同时由于信道的迟延特性和损耗特性随时间做随机变化,因此,信道特性往往只能用随机的过程来进行描述。例如,在蜂窝式移动通信中,电磁波会因为碰撞到建筑物或者其他物体而产生反射、散射、绕射,此外发射端和接收端还会受到周围环境的干扰,从而产生时变现象,其结果为信号能量会不止一条路径到达接收天线,我们称之为多径传播。数字信号经过这样的
9、信道传输后,由于受到了信道的非理想特性的影响,在接收端就会产生码间干扰(ISI),使系统误码率上升,严重情况下使系统无法继续正常工作。理论和实践证明,在接收系统中插入一种滤波器,可以校正和补偿系统的特性,减少码间干扰的影响。这种起补偿作用的滤波器称为均衡器。校正可以从时域和频域两个不同的角度来考虑:频域均衡是利用可调滤波器的频率特性来弥补实际信道的幅频特性和群延时特性,使包括均衡器在内的整个系统的总频率特性满足无码间干扰传输条件。时域均衡是从时间响应的角度考虑,使包括均衡器在内的整个传输系统的冲击响应满足无码间干扰的条件。频域均衡满足奈奎斯特定理的要求,仅在判决点满足无码间干扰的条件相对宽松一
10、些。随着数字信号的处理理论和超大规模集成电路的发展,时域均衡器已成为当今高速数字通信中所使用的主要方法。调整滤波器抽头系数的方法有手动调整和自动调整。如果接收端知道信道特性,例如信道冲击响应或频域响应,一般采用简单的手动调整方式。由于无线通信信道具有随机性和时变性,即信道特性事先是未知的,信道响应是时变的,这就要求均衡器必须能够实时地跟踪通信信道的时变特性,可以根据信道响应自动调节抽头系数,我们称这种可以自动调整滤波器抽头系数的均衡器为自适应均衡器。1.2国内(外)研究现状均衡技术最早应用于电话信道,由于电话信道频率特性不平坦和相位的非线性引起时间的弥散,使用加载线圈的均衡方法来改进传送语音用
11、的双绞线电缆的特性。最常用于均衡的线性滤波器是一个横向滤波器,称为线性均衡。有两种常用的方法确定均衡器的抽头系数:迫零(ZF)准则和最小均方误差(MMSE)准则。研究表明,线性均衡器对于像固定电话这样的信道来说性能良好,因此这种算法被广泛应用到各种码间干扰不是很严重的场合。然而随着移动通信技术的发展,这种均衡算法的弱点逐渐暴露出来。因此人们把研究的重点放在了实现简单、性能较好的非线性均衡器上。判决反馈均衡器(DFE)和最大似然序列估计(MLSE)就是两种非线性均衡器。判决反馈均衡器包括一个前馈滤波器和一个反馈滤波器。前馈滤波器与横向滤波器结构相同,反馈滤波器以对先前被检测符号的判决序列作为其输
12、入。从功能上讲反馈滤波器用于从当前估计值中除去由先前被检测符号引起的那部分符号间干扰。而最大似然序列估计(MLSE)方法实质就是在极大似然序列估计的基础上采用自适应信道估计器为序列检测提供信道信息。因此这两种非线性均衡方法与线性均衡方法相比其性能有很大的改善。由于在很多系统中衰落信道是随机时变的,故需要研究自适应地跟踪信道时变特性的均衡器,这促进了自适应均衡技术的发展。基于训练序列的自适应均衡器最早在二十世纪六十年代提出。传统的自适应均衡技术往往使用导频训练信号,即在传输的数据中加入一个时隙,在此时隙中传输一个在接收端已知的训练信号,然后根据自适应算法,在接收端调整均衡器,使均衡器的输出是与已
13、知的参考训练最相近的匹配。其技术己经被用在很多数字通讯系统中,例如:高速率电话系统,卫星通信系统,数字蜂窝移动通信系统等。至今广泛应用的自适应算法有最小均方(LMS)算法和盲均衡算法(CMA)等,他们的收敛特性和均衡性能己经被人们深入的研究。目前常见的自适应均衡器结构有格形结构、横向结构和网络结构(神经网络均衡器)。基于训练序列的自适应均衡方法的不足是传输训练序列占用了宝贵的信道容量,降低了系统的传输效率。因此二十世纪八十年代以来,无需训练序列的盲均衡技术开始得到迅速的发展。现在出现的典型的盲均衡算法如下:基于Bussagang技术的盲均衡算法、基于高阶统计量的盲均衡算法、基于二阶矩的盲均衡算
14、法8等。盲均衡的优点是可以降低发送训练序列所增加的额外开销,适用于不可能发送训练序列的情况;而其缺点是需要较多的观测数据,收敛速度较慢。近年来,半盲均衡算法也引起了人们的极大研究兴趣。半盲均衡就是同时利用盲方法所用的信息和来自已知符号的信息来完成信道均衡的方法。典型的无线通信系统中一般都会发送一些已知信号用作信道估计和同步的训练数据,或作为分隔突发数据的保护间隔,为了不显著降低系统的性能,嵌入的数据都不是太长。这种情况下,传统的基于训练序列的均衡算法没有足够长的信号序列可用,而应用纯盲均衡又有些浪费这些数据信息。半盲均衡和识别算法集成了基于训练序列的算法和纯盲算法的优点,可以很好地应用于这类通
15、信系统中,克服了两种算法分别独立使用时的缺点,其能够使盲均衡问题和基于训练序列的问题更具有鲁棒性,而且能提供比这两种方法更优的性能。由上可知,随着技术的发展,人们对移动通信系统的性能要求越来越高。因此我们有必要设计出与之相适应的各种信道均衡方法,以提高系统性能是十分必要的。1.3论文研究的主要内容本论文主要研究的是在数字通信系统中设计一个理想的均衡器,用以补偿信道,从而减少码间干扰。根据均衡器的结构有多种,我们需要根据迫零(ZF)准则或者最小均方误差(MMSE)准则选择一个均衡器,并选择较为简易的算法来调整均衡器的抽头系数,并用MATLAB进行仿真。各章的主要内容如下:第一章简单介绍了均衡技术
16、,以及其研究现状与发展等。第二章描述了通信信道的特性,对无线信道做了比较详尽的分析,并且给出了通信信道的仿真模型,介绍了产生码间干扰的原因以及一些减少码间干扰的措施,概述了自适应均衡的原理与特点。第三章介绍了最常用的自适应均衡衡器以及其中2中算法:LMS和CMA第四章选择自适应均衡器的结构和算法,用MATLAB对其进行仿真,然后分别采用LMS算法和CMA算法进行仿真,并对LMS和CMA的收敛性能抗干扰性能等其他方面进行了比较。第五章为全文做了总结与展望。第二章 信道、码间干扰及均衡技术简介数字信号经过信道的传输到达接收端,而实际上信道是一个特性复杂的函数而且还是时变的。因此接收到的信号已经发生
17、了严重的畸变从而产生码间干扰,自适应均衡器能够补偿信道所产生的畸变,并且根据接收信号的变化自动调节均衡器的抽头系数,以跟踪信道的时变特性。2.1 信道从宏观上讲,任何一个通信系统均可视为由发送设备、信道、接收设备三大部分组成。信道是通信系统的重要组成部分,其特性对通信系统的性能影响很大。实际信道都不是理想的,均具有非理想的频率响应特性,同时还不可避免地存在着噪声干扰和其他干扰。信道在允许信号通过的同时又给信号以限制和损害,信道的特性将直接影响通信的质量。研究信道及噪声的最终目的是弄清它们对信号传输的影响,寻求提高通信的有效性与可靠性的方法。信道,就是信号的通路,分为狭义信道和广义信道两大类。狭
18、义信道是指介于发送设备和接收设备之间的传输媒质构成的信号通路。它可分为有线信道和无线信道两大类。有线信道如双绞线、电缆、光纤、波导等。而广义信道是将信号经过的传输路径都称为信道,不仅包括传输媒质,还包括通信系统中有关部件和电路,如天线与馈线、功率放大器、滤波器、调制器、解调器等。广义信道又分为调制信道和编码信道。 根据以上描述,可以用如图2-1所示的四端网络来描述信道的模型,其输出信号是 (2.1)式中代表输入信号的线性或者非线性变换,代表加性噪声。 信道等效 模型 图2-1 信道模型在线性条件下,信道的传输特性决定于等效四端网络的传输函数。一般来说,信道的带宽总是有限的。这种带限信道对数字信
19、号传输的主要影响是引起码元波形的展宽,从而产生码间干扰。为了使码间干扰减少到最少的程度,就需要采用自适应均衡技术。但在实际的通信信道中会产生加性噪声,其同样会对信号传输产生影响。加性噪声与信号独立,并且始终存在,实际上只能采取措施减少加性噪声的影响,而不能彻底消除加性噪声。各种加性噪声都可以认为是一种起伏噪声,且功率谱密度在很宽的范围内都是常数。因此,通常近似认为通信系统的噪声是加性高斯白噪声(),其双边功率谱密度为 (2.2)自相关函数为 (2.3)式(2.2)说明,零均值高斯白噪声在任意两个不同时刻的取值是不相关的,因而也是统计独立的。通信信道模型如图2-3所示,发射端发送的信号经过信道传
20、送时,首先受信道传输的影响,再经由加性高斯白噪声()恶化,便成为接收端收接收到的信号。 信道 + 图2-3 通信信道仿真模型信号经过这样一个信道滤波器,再和加性高斯白噪声()相叠加,采用均值为0的随机复数序列形式,经过叠加的信号可以认为是接收端得接收信号,接下来就是对接收信号进行均衡,其目的是恢复发送端的发射信号。2.2 码间干扰由前面的讨论可知,大多数物理信道不仅是带限,而且还会使信号产生失真,而失真对于数字通信来说最大的危害是产生码间干扰,使得判决器发生误判,从而系统的误码率上升。在加性高斯白噪声(AWGN)信道中实现信号的全通或者非色散几乎是不可能的。根据图2-3,可以得出常用的信道数学
21、模型为 (2.4)式中是传输信号,是信道冲击响应,是功率谱为的加性高斯白噪声。实质上,我们是将信道的色散特性建模为一个线性滤波器。最简单的色散信道是冲击响应为理想低通滤波特性的带限信道,传输信号经过低通滤波器会在时域波形的边缘产生重叠,从而使一个码元扩展到邻近的码元从而产生码间干扰(ISI),结果会恶化通信系统的误码性能,一个点对点的数字通信系统可以简化为如图2-4所示的模型。图中,为发送滤波器的输入符号序列,在二进制情况下,取值为0,1或-1,+1。为了便于分析方便,假设用冲击脉冲序列来代表数据序列,间隔为,则送入发送滤波器的波形可写成 (2.5)接收滤波器 + 发送滤波器 信道 抽样判决器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 移动 通信 信道 均衡 技术 研究 仿真
限制150内