考研数学一历年真题完整版.doc
《考研数学一历年真题完整版.doc》由会员分享,可在线阅读,更多相关《考研数学一历年真题完整版.doc(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流考研数学一历年真题完整版.精品文档. 2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_.(2)曲面在点的法线方程为_.(3)微分方程的通解为_.(4)已知方程组无解,则= _.(5)设两个相互独立的事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相等,则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设、是恒大于零的可导函数,且,则当时,有(A)(B)(C)
2、(D)(2)设为在第一卦限中的部分,则有(A)(B)(C)(D)(3)设级数收敛,则必收敛的级数为(A) (B) (C)(D) (4)设维列向量组线性无关,则维列向量组线性无关的充分必要条件为(A)向量组可由向量组线性表示 (B)向量组可由向量组线性表示(C)向量组与向量组等价 (D)矩阵与矩阵等价(5)设二维随机变量服从二维正态分布,则随机变量与 不相关的充分必要条件为(A)(B)(C)(D)三、(本题满分6分)求四、(本题满分5分)设,其中具有二阶连续偏导数具有二阶连续导数,求五、(本题满分6分)计算曲线积分,其中是以点为中心为半径的圆周取逆时针方向.六、(本题满分7分)设对于半空间内任意
3、的光滑有向封闭曲面都有其中函数在内具有连续的一阶导数,且求.七、(本题满分6分)求幂级数的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为的球体是此球的表面上的一个定点,球体上任一点的密度与该点到距离的平方成正比(比例常数),求球体的重心位置.九、(本题满分6分)设函数在上连续,且试证:在内至少存在两个不同的点使十、(本题满分6分)设矩阵的伴随矩阵且,其中为4阶单位矩阵,求矩阵.十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第年
4、1月份统计的熟练工与非熟练工所占百分比分别为和记成向量(1)求与的关系式并写成矩阵形式:(2)验证是的两个线性无关的特征向量,并求出相应的特征值.(3)当时,求十二、(本题满分8分)某流水线上每个产品不合格的概率为,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为,求的数学期望和方差.十三、(本题满分6分)设某种元件的使用寿命的概率密度为,其中为未知参数.又设是的一组样本观测值,求参数的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设为任意常数)为
5、某二阶常系数线性齐次微分方程的通解,则该方程为_.(2),则= _.(3)交换二次积分的积分次序:_.(4)设,则= _.(5),则根据车贝晓夫不等式有估计 _.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数在定义域内可导,的图形如右图所示,则的图形为(A) (B) (C) (D)(2)设在点的附近有定义,且则(A)(B)曲面在处的法向量为(C)曲线 在处的切向量为(D)曲线 在处的切向量为(3)设则在=0处可导(A)存在 (B) 存在(C)存在 (D)存在(4)设,则与(A)合同且相似 (B)合同
6、但不相似(C)不合同但相似 (D)不合同且不相似(5)将一枚硬币重复掷次,以和分别表示正面向上和反面向上的次数, 则和相关系数为 (A) -1(B)0(C)(D)1三、(本题满分6分)求.四、(本题满分6分)设函数在点可微,且,求.五、(本题满分8分)设 ,将展开成的幂级数,并求的和.六、(本题满分7分)计算,其中是平面 与柱面的交线,从轴正向看去为逆时针方向.七、(本题满分7分)设在内具有二阶连续导数且.证明:(1)对于,存在惟一的,使 =+成立.(2).八、(本题满分8分)设有一高度为为时间)的雪堆在融化过程,其侧面满足方程(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成
7、正比(系数为0.9),问高度为130厘米的雪堆全部融化需多少时间?九、(本题满分6分)设为线性方程组的一个基础解系,其中为实常数,试问满足什么条件时也为的一个基础解系?十、(本题满分8分)已知三阶矩阵和三维向量,使得线性无关,且满足.(1)记求使.(2)计算行列式.十一、(本题满分7分)设某班车起点站上客人数服从参数为的泊松分布,每位乘客在中途下车的概率为且中途下车与否相互独立.为中途下车的人数,求:(1)在发车时有个乘客的条件下,中途有人下车的概率.(2)二维随机变量的概率分布.十二、(本题满分7分)设抽取简单随机样本样本均值,求2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(
8、本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)= _.(2)已知,则=_.(3)满足初始条件的特解是_.(4)已知实二次型经正交变换可化为标准型,则=_.(5)设随机变量,且二次方程无实根的概率为0.5,则=_.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数的四条性质:在点处连续, 在点处的一阶偏导数连续,在点处可微, 在点处的一阶偏导数存在.则有:(A)(B)(C)(D)(2)设,且,则级数为(A)发散 (B)绝对收敛(C)条件收敛 (D)收敛性不能判定.(3)设函数在上
9、有界且可导,则(A)当时,必有 (B)当存在时,必有(C) 当时,必有 (D) 当存在时,必有.(4)设有三张不同平面,其方程为()它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设和是相互独立的连续型随机变量,它们的密度函数分别为和,分布函数分别为和,则(A)必为密度函数 (B) 必为密度函数(C)必为某一随机变量的分布函数 (D) 必为某一随机变量的分布函数.三、(本题满分6分)设函数在的某邻域具有一阶连续导数,且,当时,若,试求的值.四、(本题满分7分)已知两曲线与在点处的切线相同.求此切线的方程,并求极限.五、(本题满分7分)计算二重积分,其中.
10、六、(本题满分8分)设函数在上具有一阶连续导数,是上半平面(0)内的有向分段光滑曲线,起点为(),终点为().记,(1)证明曲线积分与路径无关.(2)当时,求的值.七、(本题满分7分)(1)验证函数()满足微分方程.(2)求幂级数的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为面,其底部所占的区域为,小山的高度函数为.(1)设为区域上一点,问在该点沿平面上何方向的方向导数最大?若此方向的方向导数为,写出的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在的边界线上找出使(1)中达到最大值的点.试确定攀登起点的位置.九、(本题
11、满分6分)已知四阶方阵, 均为四维列向量,其中线性无关,.若,求线性方程组的通解.十、(本题满分8分)设为同阶方阵,(1)若相似,证明的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量的概率密度为对独立地重复观察4次,用表示观察值大于的次数,求的数学期望.十二、(本题满分7分)设总体的概率分布为0123其中()是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3.求的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分2
12、4分.把答案填在题中横线上) (1) = .(2)曲面与平面平行的切平面的方程是 .(3)设,则= .(4)从的基到基的过渡矩阵为 .(5)设二维随机变量的概率密度为 ,则 .(6)已知一批零件的长度(单位:cm)服从正态分布,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则的置信度为0.95的置信区间是 .(注:标准正态分布函数值二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数在内连续,其导函数的图形如图所示,则有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C
13、)两个极小值点和两个极大值点(D)三个极小值点和一个极大值点(2)设均为非负数列,且,则必有(A)对任意成立 (B)对任意成立(C)极限不存在 (D)极限不存在(3)已知函数在点的某个邻域内连续,且,则(A)点不是的极值点(B)点是的极大值点(C)点是的极小值点(D)根据所给条件无法判断点是否为的极值点(4)设向量组I:可由向量组II:线性表示,则(A)当时,向量组II必线性相关 (B)当时,向量组II必线性相关(C)当时,向量组I必线性相关 (D)当时,向量组I必线性相关(5)设有齐次线性方程组和,其中均为矩阵,现有4个命题: 若的解均是的解,则秩秩 若秩秩,则的解均是的解 若与同解,则秩秩
14、 若秩秩, 则与同解以上命题中正确的是(A)(B)(C)(D)(6)设随机变量,则(A)(B)(C)(D) 三、(本题满分10分)过坐标原点作曲线的切线,该切线与曲线及轴围成平面图形.(1)求的面积.(2)求绕直线旋转一周所得旋转体的体积.四、(本题满分12分)将函数展开成的幂级数,并求级数的和.五 、(本题满分10分)已知平面区域,为的正向边界.试证:(1).(2)六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为).汽锤第一次击打将桩打进地下m.根据设计方案,要求汽锤每次
15、击打桩时所作的功与前一次击打时所作的功之比为常数.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米.)七 、(本题满分12分)设函数在内具有二阶导数,且是的反函数.(1)试将所满足的微分方程变换为满足的微分方程.(2)求变换后的微分方程满足初始条件的解.八 、(本题满分12分)设函数连续且恒大于零,其中,(1)讨论在区间内的单调性.(2)证明当时,九 、(本题满分10分)设矩阵,求的特征值与特征向量,其中为的伴随矩阵,为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为试证这三条直线交于一点的充分必要条件
16、为十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体的概率密度为其中是未知参数. 从总体中抽取简单随机样本,记(1)求总体的分布函数.(2)求统计量的分布函数.(3)如果用作为的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线上与直线垂直的切线方程为_ .(2)已知,且,则=_
17、.(3)设为正向圆周在第一象限中的部分,则曲线积分的值为_.(4)欧拉方程的通解为_ .(5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则=_ .(6)设随机变量服从参数为的指数分布,则= _ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B)(C) (D)(8)设函数连续,且则存在,使得(A)在(0,内单调增加 (B)在内单调减少(C)对任意的有 (D)对任意的有 (9)设为正项级数,下列结论中正确的是(A)若=0,则
18、级数收敛(B)若存在非零常数,使得,则级数发散(C)若级数收敛,则 (D)若级数发散, 则存在非零常数,使得(10)设为连续函数,则等于(A)(B)(C) (D) 0(11)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得,则满足的可逆矩阵为(A) (B) (C) (D)(12)设为满足的任意两个非零矩阵,则必有(A)的列向量组线性相关的行向量组线性相关(B)的列向量组线性相关的列向量组线性相关 (C)的行向量组线性相关的行向量组线性相关(D)的行向量组线性相关的列向量组线性相关(13)设随机变量服从正态分布对给定的,数满足,若,则等于(A) (B)(C) (D) (14)设随
19、机变量独立同分布,且其方差为 令,则(A) (B) (C) (D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分)设,证明.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分其中是曲面的上侧.(18)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 数学 历年 完整版
限制150内