解直角三角形复习教案.doc
《解直角三角形复习教案.doc》由会员分享,可在线阅读,更多相关《解直角三角形复习教案.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流解直角三角形复习教案.精品文档.第25章 解直角三角形复习一.教学内容第25章 解直角三角形复习二. 重点、难点: 1. 重点: (1)探索直角三角形中锐角三角函数值与三边之间的关系掌握三角函数定义式:sinA,cosA,tanA,cotA (2)掌握30、45、60等特殊角的三角函数值,并会进行有关特殊角的三角函数值的计算 (3)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角 2. 难点: (1)通过探索直角三角形边与边、角与角、边与角之间的关系,领悟事物之间互相联系的辩证关系 (2)能够运用三角函数解决与直角形有关
2、的简单的实际问题 (3)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题,提高数学建模能力三. 知识梳理:1. 锐角三角函数 (1)锐角三角函数的定义 我们规定: sinA,cosA,tanA,cotA 锐角的正弦、余弦、正切、余切统称为锐角的三角函数 (2)用计算器由已知角求三角函数值或由已知三角函数值求角度 对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题 已知角求三角函数值; 已知三角函数值求锐角2. 特殊角的三角函数值sincostancot30451160由表可知:直角三角形中,30的锐角所对的
3、直角边等于斜边的一半 3. 锐角三角函数的性质 (1)0sin1,0cos1(090) (2)tancot1或tan; (3)tan,cot (4)sincos(90),tancot(90) 4. 解直角三角形 在直角三角形中,由已知元素求出未知元素的过程叫做解直角三角形 解直角三角形的常见类型有: 我们规定:RtABC,C90,A、B、C的对边分别为a、b、c 已知两边,求另一边和两个锐角; 已知一条边和一个角,求另一个角和其他两边 5. 解直角三角形的应用 (1)相关术语 铅垂线:重力线方向的直线 水平线:与铅垂线垂直的直线,一般情况下,地平面上的两点确定的直线我们认为是水平线 仰角:向上
4、看时,视线与水平线的夹角俯角:向下看时,视线与水平线的夹角 坡角:坡面与水平面的夹角 坡度:坡的铅直高度与水平宽度的比叫做坡度(坡比) 一般情况下,我们用h表示坡的铅直高度,用l表示水平宽度,用i表示坡度,即:itan 方向角:指北或指南方向线与目标方向线所成的小于90的水平角叫做方向角如图: (2)应用解直角三角形来解决实际问题时,要注意: 计算结果的精确度要求,一般说来中间量要多取一位有效数字 在题目中求未知时,应尽量选用直接由已知求未知 遇到非直角三角形时,常常要作辅助线才能应用解直角三角形知识来解答 其方法可以归纳为:已知斜边用正弦或余弦,已知直角边用正切和余切,能够使用乘法计算的要尽
5、量选用乘法,尽量直接选用已知条件进行计算 注:解直角三角形在现实生活中有广泛的应用,它经常涉及到测量、工程、航海、航空等,其中包括了一些术语,一定要根据题意明白其术语的含义才能正确解题【典型例题】例1. 已知tan,求的值分析:利用数形结合思想,将已知条件tan用图形表示解:如图所示,在RtABC中,C90,A,设BC3k,AC4k,则AB5k sin cos,原式7 例2. 计算(1)sin45cos60;(2)cos245+tan60cos30;(3);(4) 分析:这里考查的是同学们对特殊角的三角函数值的识记情况和关于根式的计算能力处理办法是能够化简的要先化简后代入计算,不能化简的直接代
6、入计算 解:(1)sin45cos60; (2)cos245+tan60cos30()2+2 (3)32; (4)1sin301 点拨:像上面第3题分子分母要分别处理,第4题要特别注意先化简再代入计算例3. 已知tan,求的值 分析:可将所求式子的分子、分母都除以cos,转化为含有的式子,再利用tan进行转化求解 解:将式子的分子、分母都除以cos,得 原式7规律总结:因为tan所以不等于90,所以cos0,因此分子分母可以同时除以cos实现转化的目的例4. 等腰三角形的底边长为6cm,周长为14cm,试求底角的余切值 分析:这是一个在非直角三角形中求锐角的三角函数值的题目,根据三角函数的定义
7、,要先恰当的作辅助线(垂线)构成直角来解决这个题涉及到等腰三角形,作底边上的高是解决问题常见办法解:如图所示,作等腰三角形ABC,BC为底边,ADBC于D ABC的周长为14,底边BC6,腰长ABAC4 又ADBC,BDCD3 在直角三角形ABD中,ADB90, AD cotB 答:等腰三角形底角的余切值是 点拨:计算一个锐角的三角函数值,应在直角三角形中来考虑,如果题中没有直角三角形,那么就要通过作辅助线来构造直角三角形 例5. RtABC,C90,A、B、C的对边分别为a、b、c,根据下列条件解直角三角形 (1)a4,c10; (2)b2,A40; (3)c3,B58 分析:(1)题是已知
8、两边解直角三角形;(2)、(3)是已知一边和一角解直角三角形解:(1)b2,由sinA0.4,A23.6,B90A9023.666.4(2)B90A904050,由tanA,得abtanA2tan4020.83911.678, 由cosA,得c2.611(3)A90B905832, 由sinB,得bcsinB3sin5830.8482.544,由cosB,得accosB3cos5830.52991.590点拨:在选择三角函数时,一般使用乘法进行计算,能够用三角函数求其中的未知边的问题,一般不使用勾股定理求边例6. 如图,一艘轮船从离A观察站的正北20海里处的B港处向正西航行,观察站第一次测得该
9、船在A地北偏西30的C处,一个半小时后,又测得该船在A地的北偏西的D处,求此船的速度 分析:根据速度等于路程除以时间,必须求到DC的长,观察图形,DCDBCB,而BD在RtABD中可求,BC在RtABC中可求 解:在RtABC中,BCABtan302020(海里) 在RtABD中,BDABtan602060(海里) 所以DCDBCB602040(海里) 船的速度是:401.526(海里) 答:船的速度是26海里 点拨:凡涉及方向角的问题,一定要确定中心,如上题中的方向角就是以A为中心的 例7. 如图所示,河对岸有一座铁塔AB,若在河这边C、D处分别用测角仪器测得塔顶A的仰角为30,45,已知C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直角三角形 复习 教案
限制150内